
Neural Networks Are Graphs!
Graph Neural Networks for Equivariant

Processing of Neural Networks
David W. Zhang1 Miltiadis Kofinas1 Yan Zhang2 Yunlu Chen1

Gertjan J. Burghouts3 Cees G. M. Snoek1

1University of Amsterdam 2Samsung - SAIT AI Lab 3TNO

40 Years

TAG in DS Circle Graphic for Light Backgrounds

Overview

AbstractNeural networks that can process the parameters of other neural networks find applications
in diverse domains, including processing implicit neural representations, domain adaptation of pre‐
trained networks, generating neural network weights, and predicting generalization errors. However,
existing approaches either overlook the inherent permutation symmetry in the weight space or rely
on intricate weight‐sharing patterns to achieve equivariance. In this work, we propose representing
neural networks as computation graphs, enabling the use of standard graph neural networks to pre‐
serve permutation symmetry. We also introduce probe features computed from the forward pass
of the input neural network. Our proposed solution improves over prior methods from 86% to 97%
accuracy on the challenging MNIST INR classification benchmark, showcasing the effectiveness of
our approach.

Keywords processing neural networks, neural functionals, deep weight space, graph neural networks,
equivariance

Introduction – Symmetries

Neurons in an MLP can be reordered while maintaining exactly the same function [3]. Reordering neu‐
rons here means changing the preceding and following weights attached to the neuron accordingly.

Consider a two‐layer MLP f (x) = W2σ(W1x). Then, permuting the rows of the first weight matrix
and the columns of the second matrix, i.e. applying the permutation matrix P to the first weight matrix
W̃1 = P W1 and similarly to the second W̃2 = W2P ⊤ results in the exact same function:

W̃2σ(W̃1x) = W2P
⊤σ(P W1x) = W2P

⊤P σ(W1x) = W2σ(W1x).

Figure 1. Weight symmetries in a 3‐layer MLP. Figure credit: [4].

Neural networks as graphs

Figure 2. A neural network as a graph. We assign neural network parameters to graph features by treating biases bi as
corresponding node features Vi, and weights Wij as edge features Eij connecting the nodes in adjacent layers.

Method – Graph networks for neural networks

Before we apply the graph networks, we add position embeddings to the input graph. To retain the
permutation symmetry nodes in the same hidden layer share the same position embedding.

We extend PNA [1] with an MLP that updates the edge features given the incident nodes’ features and
the previous layer’s edge features.

Figure 3. Diagram for PNA. Figure credit: [1].

We extend Relational Transformer [2] with multiplicative interactions between node and edge features
to algorithmically align it with the forward‐pass of a neural network.

Figure 4. Standard (left) vs. relational (right) attention. Figure credit: [2].

Probe features

Given a neural network as input, we probe it at a set of points. Then, we concatenate all the resulting
activations as additional node features to the input graph.

Experiments

Table 1. Classification of MNIST INRs. All graph‐based
models outperform the baselines.

Model Accuracy in %

MLP [4] 17.6±0.0

Set NN [4] 23.7±0.1

DWSNet [4] 85.7±0.6

GNN (Ours) 94.7±0.3

Relational transformer (Ours) 97.3±0.2

Figure 5. Importance of probe features on classifying
MNIST INRs.

Table 2. Dilating MNIST INRs. Mean‐squared error (MSE)
computed between the reconstructed and dilated
ground‐truth images. Lower is better.

Model MSE in 10−2

DWSNet [4] 2.58±0.00

NFN [5] 2.55±0.00

GNN (Ours) 2.06±0.01

Relational transformer (Ours) 1.75±0.01

Figure 6. Importance of probe features on dilating MNIST
INRs.

Table 3. Position embeddings ablation on MNIST INR classification.

Model MSE in 10−2

GNN (without PE) 83.9±0.3

GNN (Ours) 91.4±0.6

Model MSE in 10−2

Relational transformer (without PE) 77.9±0.7

Relational transformer (Ours) 92.4±0.3

References

[1] Gabriele Corso et al. “Principal neighbourhood aggregation for graph nets”. In: NeurIPS. 2020.
[2] Cameron Diao and Ricky Loynd. “Relational Attention: Generalizing Transformers for Graph‐Structured Tasks”. In: ICLR. 2023.
[3] Robert Hecht‐Nielsen. “On the algebraic structure of feedforward network weight spaces”. In: Advanced Neural Computers. Elsevier, 1990.
[4] Aviv Navon et al. “Equivariant architectures for learning in deep weight spaces”. In: ICML. 2023.
[5] Allan Zhou et al. “Permutation Equivariant Neural Functionals”. In: arXiv preprint arXiv:2302.14040 (2023).

https://davzha.netlify.app/ https://mkofinas.github.io/ TAG-ML Workshop, ICML 2023, Honolulu, HI, USA w.d.zhang@uva.nl,m.kofinas@uva.nl

https://davzha.netlify.app/
https://mkofinas.github.io/
mailto:w.d.zhang@uva.nl,m.kofinas@uva.nl

	References

