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Abstract

Modelling interactions is critical in learning complex dynamical systems, namely
systems of interacting objects with highly non-linear and time-dependent behaviour.
A large class of such systems can be formalized as geometric graphs, i.e., graphs
with nodes positioned in the Euclidean space given an arbitrarily chosen global
coordinate system, for instance vehicles in a traffic scene. Notwithstanding the
arbitrary global coordinate system, the governing dynamics of the respective dy-
namical systems are invariant to rotations and translations, also known as Galilean
invariance. As ignoring these invariances leads to worse generalization, in this
work we propose local coordinate frames per node-object to induce roto-translation
invariance to the geometric graph of the interacting dynamical system. Further,
the local coordinate frames allow for a natural definition of anisotropic filtering in
graph neural networks. Experiments in traffic scenes, 3D motion capture, and col-
liding particles demonstrate that the proposed approach comfortably outperforms
the recent state-of-the-art.

1 Introduction

Modelling interacting dynamical systems –systems of interacting objects with highly non-linear
and time-dependent behaviour– with neural networks is attracting a significant amount of interest
[27, 3, 19] for its potential to learn long-term behaviours directly from observations. A large class
of these systems consists of objects in the physical space, for instance pedestrians in a traffic scene
[31, 37] or colliding subatomic particles [5]. These systems can be formalized as geometric graphs, in
which the nodes describe the physical coordinates of the objects among other features. Kipf et al. [27]
introduced Neural Relational Inference (NRI) to learn geometric graph dynamical systems using the
variational autoencoding framework [25, 38]. Following [27], dynamic NRI [19] advocated sequential
latent variable models to encode time-transient behaviours. Both approaches and the majority of
learning algorithms for dynamical systems assume an arbitrary global coordinate system to encode
time-transient interactions and model complex behaviours. In this work, we posit that taking into
account the relative nature of dynamics is key to accurate modelling of interacting dynamical systems.

Represented by geometric graphs, learning algorithms of dynamical systems subscribe themselves to
the Newtonian space. The absolute notion of Newtonian space and mechanics, however, determines
that there exist infinite inertial frames that connect with each other by a rotation and translation.
Each of these inertial frames is equivalent in that they can all serve as global coordinate frames and,
thus, an arbitrary choice is made. Notwithstanding this arbitrariness, the dynamics of the system are
invariant to the choice of a global coordinate frame up to a rotation and translation, in what is also
known as Galilean invariance. Put otherwise, geometric graphs of interacting dynamical systems
often exhibit symmetries that if left to their own devices lead models to subpar learning.

Inspired by the notion of Galilean invariance, we focus on inducing roto-translation invariance
in interacting dynamical systems and their geometric graphs to sustain the effects of underlying
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pathological symmetries. Symmetries, invariances and equivariances have attracted an increased
interest with learning algorithms in the late years [11, 12, 53, 54, 46, 17]. The reason is that with the
increasing complexity of new tasks and data, exploiting the symmetries improves sample efficiency
[17, 41] by requiring fewer data points and gradient updates. To date the majority of works on
exploiting symmetries or data augmentations are with static data [11, 44, 54]. We argue and show
that invariance in representations of dynamic data is just as important, if not more, as it is critical in
accounting for the inevitable increased pattern complexity and non-stationarity.

We induce roto-translation invariant representations in graphs by local coordinate frames. Each local
coordinate frame is centered at a node-object in the geometric graph and rotated to match its angular
position –yaw, pitch, and roll. Since all intermediate operations are performed on the local coordinate
frames, the graph neural network is roto-translation invariant and the final transformed output is
roto-translation equivariant. We obtain equivariance to global roto-translations by an inverse rotation
that transforms the predictions back to the global coordinates.

We make the following three contributions. First, we introduce canonicalized roto-translated local
coordinate frames for interacting dynamical systems formalized in geometric graphs. Second, by
operating solely on these coordinate frames, we enable roto-translation invariant edge prediction
and roto-translation equivariant trajectory forecasting. Third, we present a novel methodology for
natural anisotropic continuous filters based on relative linear and angular positions of neighboring
objects in the canonicalized local coordinate frames. We continue with a brief introduction of
relevant background and then the description of our method. We present related work and finish with
experiments and ablation studies on a number of settings, including modelling pedestrians in 2D
traffic scenes, 3D particles colliding, and 3D human motion capture systems.

2 Background

2.1 Interacting dynamical systems and geometric graphs

An interacting dynamical system consists of i = 1, . . . , Nt objects, whose position p = (px, py, pz)
⊤

and velocity u = dp
dt = (ux, uy, uz)

⊤ in the Euclidean space are recorded over time t. The state
of the i-th object at timestep t is described by xti = [pti,u

t
i], adopting for clarity a column vector

notation and using [·, ·] to denote vector concatenation.

Over the past few years, a natural way that has emerged for organizing interacting dynamical systems
is by geometric graphs [3, 27, 19] through space and time, G = {Gt}Tt=1, where Gt = (Vt, Et) is
the snapshot of the graph at timestep t. The nodes Vt =

{
vt1, . . . , v

t
Nt

}
of the graph correspond to

the objects in the dynamical system, with vti corresponding to the state of the i-th object, xti. The
edges Et ⊆

{
etj,i =

(
vtj , v

t
i

)
|
(
vtj , v

t
i

)
∈ Vt × Vt

}
of the graph, correspond to the interactions from

node-object j to node-object i. We use N (i) to denote the graph neighbours of node vi. In the
absence of domain knowledge about how objects connect, for instance the links between atoms in
molecules, the graph is fully connected. Explicit inference of the graph structure can be achieved by
using latent edges ztj,i corresponding to the edges etj,i.

Graph neural networks [42, 32, 18] exchange messages between neighbors and update the vertex and
edge embeddings per layer, commonly referred to as message passing

h
(l)
j,i = f (l)e

([
h
(l−1)
i ,h

(l−1)
j,i ,h

(l−1)
j

])
(1)

h
(l)
i = f (l)v

h
(l−1)
i ,□

j∈N (i)

h
(l)
j,i

, (2)

where h
(l)
i is the embedding of node vi at layer l and h

(l)
j,i is the embedding of edge ej,i at layer l.

fe, fv denote differentiable functions such as MLPs and □ denotes a permutation invariant function,
commonly a summation or an average. Many graph neural networks rely on isotropic filters [26],
although various ways [47, 36] to circumvent this constraint have also been explored.
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Figure 1: In (a), objects positioned in an arbitrary global 2D coordinate frame; arrows represent
orientations. In (b)-(e), objects in the canonicalized local coordinate frames, translated to match the
target object’s position and rotated to match its orientation

2.2 Neural relational inference

Kipf et al. [27] proposed neural relational inference (NRI), a variational autoencoding inference
model [25, 38] that explicitly infers the graph structure over a discrete latent graph and simultaneously
learns the dynamical system. Given the input trajectories the encoder learns to infer interactions
as latent edges zj,i ∈ [0, 1]

K , sampled from a concrete distribution [34, 23] with K edge types.
The decoder receives the inferred interactions and the past trajectories, and learns the dynamical
system, pθ(x|z) =

∏T
t=1 pθ(x

t+1|x1:t, z). The encoder is a regular graph neural network without
explicitly taking time into account and learns to infer latent interactions by maximizing the evidence
lower bound for the next time step. The decoder is another graph neural network that either assumes
Markovian dynamics pθ(xt+1|x1:t, z) = pθ(x

t+1|xt, z) or is recurrent through time. As the prior
and encoder in NRI assume static interactions (e.g. whether forces between charged particles are
attractive or repulsive), dynamic NRI [19] replaces them with a sequential relation prior based on past
states, pϕ(z|x) =

∏T
t=1 pϕ

(
zt|x1:t, z1:t−1

)
, and an approximate relation posterior based on both

the past and future states. The decoder is also reformulated as pθ(x|z) =
∏T
t=1 pθ(x

t+1|x1:t, z1:t),
taking into account the dynamic nature of interactions.

2.3 Invariance and equivariance

Last, we give a very brief introduction to invariance and equivariance. A function f : X → Y is
equivariant [54] under a group of transformations if every transformation π ∈ Π of the input x ∈ X
can be associated with a transformation ψ ∈ Ψ of the output, ψ[f(x)] = f(π[x]). A special case is
invariance, where Ψ = {I}, the identity transformation, f(x) = f(π[x]).

In this work, we are interested in translation, i.e., f(x) + τ = f(x+ τ ) with the translation vector
τ , and rotation invariance/equivariance, i.e., Qf(x) = f(Qx) using the rotation matrix Q.

3 Roto-translation invariance with local coordinate frames

In this section we present our method, termed LoCS (Local Coordinate frameS). We start with the
derivation of roto-translated local coordinate frames and continue with the formulation of graph
networks and continuous anisotropic filters operating in these frames.

3.1 Local coordinate frames

Starting from the spatio-temporal graph G, we focus for clarity on pairs of node-objects in the same
time step, xti,x

t
j . In the real world, objects are not point particles and have a spatial extension.

Central to our method is the use of the angular positions ω = (θ, ϕ, ψ)
⊤, otherwise known as yaw,

pitch and roll, that describe the orientation of a rigid body with respect to the axes of the coordinate
system. We, thus, augment the states xti with the angular positions, using vti = [pti,ω

t
i ,u

t
i] to denote

the augmented state that captures the angular position as well as the linear position and velocity.
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Our method draws inspiration from Galilean invariance and inertial frames of reference that capture
the relative locations and motions of all the objects in a system. We introduce Nt local coordinate
frames, one per object in the system. For the i-th object, a local coordinate frame is one in which
both the linear and the angular position lie on the origin. By the adoption of the local coordinates
with respect to object-centric frames, the behaviors between objects will not depend on the arbitrary
positions of objects in the absolute Newtonian space. In other words, the local coordinates offer
invariance to global translations and rotations and do not bias the learning algorithm. Our goal,
thereby, is to compute the relative local coordinates of all objects j = 1, . . . , Nt, while iterating over
the i-th reference object.

The transformation from global to local coordinate systems is in two steps. Per target node, we
first translate the origin to match its linear position by a translation transformation. Since velocities
and angular positions are translation invariant, we only need to perform the translation to the linear
positions. This gives us the relative positions rtj,i =

[
ptj − pti

]
. Then, we canonicalize the local

coordinate frame to match the target object’s orientation by a rotation transformation, described by
the rotation matrix Q(ωi). The coordinates of all other objects are analogously transformed given the
i-th local coordinate frame. The rotations are performed independently and equivalently to the state
components of the j-th object, namely the relative –due to the translation transformation performed
first– linear positions, the angular positions and the velocities. A schematic overview of the proposed
transformation in a 2D setting is presented in fig. 1. Using tensor operations, we compactly write
down the transformed state as:

R̃(ω) = Q(ω)⊕Q(ω)⊕Q(ω) (3)

vtj|i = R̃t⊤
i

[
rtj,i,ω

t
j ,u

t
j

]
(4)

where ⊕ denotes the direct sum operator that concatenates two matrices along the diagonal resulting
in a block diagonal matrix and R̃t⊤

i = R̃⊤(ωti) to reduce notation clutter. The rotation matrix in
eq. (3) has three entries. Each Q(ω) independently transforms the relative linear positions, the
angular positions and the velocities.

Local coordinate frames in 2D We start with the simpler case where the dynamical system resides
in the 2D Euclidean space, for instance pedestrians in a traffic scene. In 2 dimensions, the angular
position is a scalar value, namely the yaw angle θ. Thus, the rotation matrix for a target node vi is:

Q(ωi) = Q(θi) =

(
cos θi − sin θi
sin θi cos θi

)
(5)

Local coordinate frames in 3D When in the 3D Newtonian space the chain of transformations is
the same; first, we translate the origin to match each target node’s linear position, and then we rotate
the local coordinate frames to match each object’s orientation. The translation transformation is
identical to the 2D case. However, the rotation transformation is more involved. For the 3D case, we
must decompose Q(ω) into 3 chained elemental rotations, described by the matrices Qz(θ), Qy(ϕ)
and Qx(ψ). Qz(θ) describes a rotation around the z-axis by an angle θ, Qy(ϕ) describes a rotation
around the y-axis by an angle ϕ and Qx(ψ) describes a rotation around the x-axis by an angle ψ. We
use the following convention that dictates the order of rotations, Q(ω) = Qz(θ)Qy(ϕ)Qx(ψ). Each
elemental rotation matrix has similar structure to eq. (5). We provide the complete description of
all rotation matrices in appendix A.2. After the computation of the rotation matrix, the states are
transformed identically to eq. (4).

The local coordinate frames are invariant with respect to global translations and rotations, either
in 2 or 3 dimensions. We provide the detailed derivations of Q(ω) for the 2D and 3D case in
appendices A.1 and A.2, respectively, and a detailed proof in appendix A.3.

3.2 Approximate angular positions

In practice, we do not always have perfect information about the object states, such as the angular
positions. In this case, we can approximate them using the angles of the velocity vector as a proxy.
Specifically, in 2 dimensions, the angular position is a scalar value and is approximated using the
azimuth angle of the polar representation of the velocity vector, θ = tan−1(uy/ux). In 3 dimensions,
we transform velocities to spherical coordinates (uρ, uθ, uϕ) and use these angles to rotate the local

4



coordinate frame and approximate 2 out of the 3 angles. The angle θ is computed as above and
ϕ = cos−1(uz/∥u∥2). In this case, we retain invariance for the coordinates for which we have
perfect knowledge, while we will have an invariance leakage for the approximate ones. That said,
experiments show there is little to no consequences and accurate predictions are still attained.

3.3 Local coordinate frame graph neural networks

Having canonicalized the object states in the interacting system, we obtain representations that are
invariant to global translations and rotations. Following [19], we formulate the core of the network
as a variational autoencoder [25, 38] with latent edge types that change dynamically over time.
The network receives the canonicalized representations as input and operates solely on the local
coordinate systems. We infer the graph structure over a discrete latent graph and simultaneously
learn the dynamical system. Learning the graph structure is a roto-translation invariant task; we want
to predict the same edge distribution for each pair of vertices regardless of the global rotation of
translation. In contrast, trajectory forecasting is a roto-translation equivariant task; a global translation
and rotation to the input trajectories should affect the output trajectories equivalently. Following [19],
we maximize the evidence lower bound, L(ϕ, θ) = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||pϕ(z|x)].
We provide the exact form of the loss components in appendix B.1.

Encoder and prior Our encoder and prior closely follow [19], described in section 2.2. First, we
compute the local coordinate frame representations vtj|i per pair j, i (including self-loops) and per
timestep t according to eq. (4). We then perform a number of message passing steps and obtain a
feature vector per object pair. Omitting time indices for clarity, we have

h
(1)
j,i = f (1)e

([
vj|i,vi|i

])
(6)

h
(1)
i = f (1)v

g(1)v (vi|i)+ 1

|N (i)|
∑

j∈N (i)

h
(1)
j,i

 (7)

h
(2)
j,i = f (2)e

([
h
(1)
i ,h

(1)
j,i ,h

(1)
j

])
(8)

The functions f (1)e , f
(1)
v , f

(2)
e are MLPs and g(1)v is a linear layer. We feed the embeddings h(2)

j,i into 2
LSTMs [22]: one forward in time that computes the prior and one backwards in time for the encoder.
The hidden state from the forward LSTM is used to compute the prior distribution, while the hidden
states from both the forward and the backward LSTM are concatenated to compute the encoder
distribution. The formulation is identical to [19]; the exact details can be found in appendix B.1.

During training, we sample interactions ztj,i from qϕ
(
ztj,i|x

)
using Gumbel-Softmax [34, 23]. We

perform teacher-forcing during the whole training, and task the model to predict the trajectories only
for one step ahead. During inference, we sample interactions from the prior distribution.

Decoder As mentioned in section 2.2, the decoder pθ(x|z) =
∏T
t=1 pθ(x

t+1|x1:t, z1:t) is tasked
with predicting future trajectories given past and present trajectories as well as the predicted relations.
As proposed by [19, 27] we can have either a Markovian or a recurrent decoder, depending on the
governing dynamics. In many settings, like colliding elementary particles in physics, the governing
dynamics satisfy the Markov property, pθ(xt+1|x1:t, z1:t) = pθ(x

t+1|xt, zt). In this case, the
decoder is implemented with a graph neural network similar to [19]. In many real-world applications,
however, the Markovian assumption does not hold. In that case, the graph neural network also
features a GRU unit that learns a recurrent hidden state during the message passing.

We can use local coordinates frames with both types of decoders, as defined in [19, 27], with the
difference that the message passing is performed with the local coordinate frame representations vtj|i,
so that we attain roto-translation invariance,

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i

])
(9)

mt
i = f (3)v

g(3)v (vti|i)+ 1

|N (i)|
∑

j∈N (i)

mt
j,i

. (10)
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The output of the model per time step comprises position and velocity predictions for the next time
step. As common in the literature [19], we predict the difference in position and velocity from the
previous time step, which equals the velocity and acceleration respectively, and numerically integrate
to make predictions. While computations up to the output layer are roto-translation invariant, the
predictions must be roto-translation equivariant, so that global roto-translations to the inputs affect
the outputs equivalently. To transform predictions back to the global coordinate frame and achieve
roto-translation equivariance, we do an inverse rotation by R(ωti) = Q(ωti) ⊕ Q(ωti), and then
integrate numerically, i.e., xt+1

i = xti+R(ωti) ·∆xt+1
i . We provide the definitions for both decoders

in appendix B.1, and a detailed proof on equivariance to global roto-translations in appendix A.3.

3.4 Anisotropic filtering

One of the main reasons why filters in graph neural networks are isotropic is the inherent absence
of an invariant coordinate frame. In a geometric graph dynamical system, object positions can
serve this role. We, thus, use the local roto-translation invariant coordinate frames for anisotropic
filtering, using weights that depend on the relative linear positions and angular positions of objects
given the central i-th object. Similar to [45], our filter generating network, implemented by an
MLP, is a matrix field that maps relative positions and orientation tuples to graph network filters,
i.e. weight matrices, WF : RD × S |ω| → RDout×Din . The anisotropic filters replace the isotropic
ones in updating the latent edge representations, weighing neighbors according to their positions,
htj,i = WF

([
Q⊤(ωti) · rtj,i,Q⊤(ωti) · ωtj

])
·
[
vtj|i,v

t
i|i

]
.

3.5 Data normalization

While the graph neural networks are roto-translation invariant and equivariant in the intermediate
and the output layers respectively, we must also make sure that the pre- and post-processing of
data are appropriate. The common practices of min-max normalization or z-score normalization are
unsuitable because they anisotropically scale and translate the input and output position and velocities.
That is, these transformations change the directions of the velocity vectors non-equivalently. This
is counter-intuitive, since velocities are not treated as geometric entities but as generic additional
dimensions to the features. For instance, as translation equals a vector subtraction changing the
magnitude and the direction of vectors, translating the velocities removes any notion of speed from the
input to the neural network. What is more, the scaling operations apply anisotropic transformations,
affecting each axis differently.

We instead opt for a much simpler data normalization scheme that is more geometrically oriented and
suitable for roto-translation invariance with local coordinate frames. This scheme does not perform
any translation operations, since local coordinate frames naturally tend to center data around the
origin; besides, they are invariant to a mere isotropic translation to the node positions. For the scaling
operation, we opt for a simple isotropic transformation that shrinks relative positions and velocities
equivalently across all axes. We scale the inputs, both positions and velocities, by the maximum speed
(velocity norm) in the training set, smax = maxi ∥ui∥, that is x′ = S−1x, where S = diag(smax · 1).
During post-processing, we can convert our predictions to actual units, e.g. m and m/s, by applying
the inverse transformation, x = Sx′. We term this operation speed normalization.

4 Related work

Learning dynamical systems & trajectory forecasting In the late years, and alongside NRI [27]
and dNRI [19], many have studied learning dynamical systems [3, 40]. Further, many works have
focused on the problems of pedestrian motion prediction and traffic scene trajectory forecasting
[1, 28, 21, 35, 39]. A number of works [1, 39] uses distance-based heuristics to create the graph
adjacency and estimate interactions. Kosaraju et al. [28] use self-attention to predict the influence of
neighbouring nodes. Both approaches are different from our work, since we explicitly predict the
latent graph structure and perform inference on it.

Equivariant deep learning Equivariant neural networks [11, 12, 53, 54, 46] have risen in popularity
over the past few years, demonstrating high effectiveness and parameter efficiency. Schütt et al. [44]
use radial basis functions on pair-wise node distances to generate continuous filters and perform mes-
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sage passing using depth-wise separable convolutions. Fuchs et al. [17] introduce SE(3)-transformers
by incorporating spherical harmonics in a transformer network, resulting in a 3D roto-translation
equivariant attention network. de Haan et al. [13] propose anisotropic gauge equivariant kernels for
graph networks on meshes based on neighbouring vertex angles and parallel transport. Walters et al.
[50] propose rotationally equivariant continuous convolutions for 2D trajectory prediction. Closer to
our work is the work of Satorras et al. [41]. They propose a graph network that leverages the rotation
equivariant relative position and roto-translation invariant euclidean distance between node pairs in a
novel message passing scheme that updates node features as well as node coordinate embeddings.
Different from our work, they do not capitalize on orientations and velocities of neighbouring objects.
Our work leverages these impactful quantities expressed in local coordinate frames to make more
reliable predictions.

Anisotropic filtering Graph neural networks [42, 32, 18] have been used extensively for modeling
dynamical systems [55, 35, 27, 19, 3]. Several works [35] incorporate isotropic graph filters [26, 20]
as part of the graph network. However, these isotropic filters have a global weight sharing scheme, i.e.
they use a single weight matrix for all neighbours, which amounts to a linear transformation over the
aggregated neighbour information. Velickovic et al. [47] use self-attention [2] and [36] use Gaussian
Mixture Models (GMMs) based on relative neighbour positions.

Other works address this issue by proposing continuous filters on graphs and point clouds [24, 51,
45, 50, 44, 16]. Highly related to our work is the work of Simonovsky and Komodakis [45]. They
generalize convolution to arbitrary graphs and introduce dynamically generated filters based on
edge attributes to perform continuous anisotropic convolutions on graph signals and point clouds.
Differently, though, they do not operate under roto-translated local coordinate systems. This results in
diminished parameter efficiency and weight sharing that they compensate for with data augmentation.

5 Experiments

We evaluate the proposed method, LoCS, on 2D and 3D geometric graph dynamical systems from
the literature. In 2D, we evaluate on a synthetic physics simulation dataset proposed by dNRI [19]
and on traffic trajectory forecasting [4]. In 3D, we evaluate on an 3D-extended version of the charged
particles [27] and on a motion capture dataset [10]. We compare with NRI [27], dNRI [19], and the
very recent EGNN [41]. For all methods we use publicly available code from [19, 41]. For EGNN,
we autoregressively feed the output as the input to the next timestep. The full implementations details
are in appendix B.3. Our code, data, and models will be available online1.

Our architecture closely follows dNRI[26, 19]. Unless otherwise specified, all common layers have
the same structure, and we use the same number of latent edge types. Following [26, 19], we report
the mean squared error of positions and velocities over time. We compute errors in the original
unnormalized data space for a fair comparison across different data normalization techniques and
scales,E(t) = 1

ND

∑N
n=1 ∥xtn−x̂tn∥22. We also report the L2 norm errors for positions (displacement

errors), Ep(t) = 1
N

∑N
n=1∥ptn − p̂tn∥2, and velocities, Eu(t) = 1

N

∑N
n=1∥utn − ûtn∥2, separately

to gain insights. L2 norm errors are in the same scale with the respective variables (position and
velocity) and, thus, more interpretable than MSE. We always ran experiments using 5 different
random initialization seeds and report the mean and the standard deviation. We plot each method
with a different color, as well as a different marker for color-blind friendly visualizations. The
x-coordinates of the markers are chosen for aesthetic purposes; they differ across settings and they
are not meant to convey extra information. Here we report the main results and visualizations and
provide much more extensive examples in the appendix.

5.1 Synthetic dataset

On the synthetic 2D physics simulation we use the same experimental settings as in [19]. The
dataset comprises scenes with three particles. Two of the particles move with a constant, ran-
domly initialized velocity and the third particle is initialized with random velocity but pushed
away when close to one of the others. Scenes last for 50 timesteps. For evaluation, we
use the first 25 timesteps as input and the models are tasked with predicting the following

1https://github.com/mkofinas/locs
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Figure 2: Results on synthetic dataset
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Figure 3: LoCS predictions on (a) synthetic dataset, (b) charged particles and (c) inD.

25 timesteps. We report the results in fig. 2 and plot qualitative examples fig. 3a, more in
fig. 7 in appendix C.1. We also report the average F1 score for relation prediction in table 1.

Table 1: Relation prediction F1 score
on synthetic dataset

Method NRI dNRI LoCS

F1 26.5 60.8 88.9

In all visualizations, each color denotes a different object.
Semi-transparent trajectories indicate the groundtruth future
trajectories. Present timesteps are denoted by small black
circles. Markers denote the timesteps, increasing in size as
trajectories evolve through time. We observe that our method
can reliably model interactions and outperforms competing
methods in predicting future trajectories.

5.2 Charged particles

In the charged particles datasets the particles interact with one another via electrostatic forces. We
extend the dataset by [27] from 2 to 3 dimensions and, following a similar approach to [17, 41],
we remove the virtual boxes that confine the particle trajectories. We generate 30,000 scenes for
training, 5,000 for validation and 5,000 for testing. Each scene comprises trajectories of 5 particles
that carry either a positive or a negative charge. The forces are either attractive or repulsive according
to physical laws. Following [27], training and validation scenes last for 49 timesteps. For evaluation,
test scenes last for 20 additional timesteps (50 for visualization). We plot the MSE in fig. 4a and L2

errors in Figure 11 in appendix D. LoCS has consistently lower errors, in total as well as individually
for positions and velocities. We, further, provide qualitative results for 50 future time steps in fig. 3b,
see more in fig. 8 in appendix C.2.

5.3 Traffic trajectory forecasting

The inD dataset [4] is a real-world 2D traffic trajectory forecasting dataset of pedestrians, vehicles,
and cyclists, recorded at 4 different German traffic intersections. Traffic scenes contain a varying
number of participants also changing over time. We follow the exact same setting as in dNRI. The
dataset contains 36 recordings; we split them in 19/7/10 for training, validation and testing. We divide
each scene into 50-step sequences. We use the first 5 timesteps as input and the model has to predict
the remaining 45 time steps. We compare with dNRI, EGNN, and a GRU [7] baseline, but not with
NRI since there are varying number of nodes. We plot the MSE in fig. 4b and L2 errors in Figure 12
in appendix D and as before, LoCS outperforms competing methods consistently.

8



LoCS (Ours) dNRI NRI EGNN GRU

1 5 9 13 17 20
Step

0.0

0.2

0.4

0.6

M
SE

Total Errors

(a)

1 10 19 28 37 45
Step

0

20

40

60

M
SE

Total Errors

(b)

1 9 17 25 33 41 48
Step

0.0

0.2

0.4

0.6

0.8

M
SE

Total Errors

(c)

Figure 4: Total error curves in: (a) charged particles, (b) inD, (c) motion #35
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Figure 5: Total error curves in ablation experiments: (a) on highly interactive charged particles, (b) on
the impact of speed normalization, (c) on the impact of isotropic filters, (d) on the impact of rotation.

5.4 Motion capture

Last, we experiment with the CMU motion capture database [10] with 3D data, following the exact
same setting as [27, 19] and studying the motion of subject #35. We train the models using sequences
of 50 timesteps as input and evaluate on sequences of 99 time steps. We plot the MSE in fig. 4c and
L2 errors in fig. 13 in appendix D and observe that LoCS is attaining consistently lower errors.

5.5 Ablation experiments

High-intensity interactions We assess LoCS in fig. 5a in highly interactive scenarios by creating a
subset of the charged particles test set (819 scenes – 16.38% of the original test set) in which a simple
constant velocity model performs poorly (L2 error > 1.5). With more and stronger interactions the
proposed local coordinate frames performs even better relatively to competitors.

Speed normalization impact We assess the impact of speed normalization on the synthetic dataset
in fig. 5b. We evaluate LoCS with and without speed normalization, as well as dNRI with speed
normalization instead of min-max normalization. Results are shown in fig. 5b. We observe that
when the inputs are normalized using min-max normalization, LoCS underperforms. Without any
normalization, LoCS already performs better than other baselines. Using speed normalization
improves the performance of LoCS even further. Finally, speed normalization is not the main cause
for the improvements for LoCS. If it were, it should also benefit dNRI. We conclude that speed
normalization is important for local coordinate frames to make sure equivariance is maintained after
un-normalization. LoCS attains the highest accuracies when combined with speed normalization,
although it works quite well even without it, while methods that are not equivariant like dNRI do not
benefit from it.
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Figure 6: In a, b, c, translated-only local coordinate frames for object A in 3 different dynamical
systems #1-#3. In d, dynamical system #3, A’s roto-translated local coordinate frame

Impact of anisotropic filtering We compare anisotropic and isotropic filtering on inD in fig. 5c.
Be it with isotropic or anisotropic filters, the local coordinate frames outperform the competitors.
That said, anisotropic filters give a clear advantage over isotropic ones.

Impact of rotation in spherical symmetries Even though particles do not have intrinsic orienta-
tions, they do have the direction of their velocity. We postulate that roto-translated local coordinate
frames allow for more efficient learning, as long as the coordinate frames are consistently invariant.
To motivate this, consider the simple case of a 2D system shown in fig. 6a with three objects A, B,
C with no intrinsic orientation. In fig. 6a, B is far above left of A, while C is near below right of
A. Rotating the system by π, see fig. 6b, A still lies at the same origin, however, C is now in the
top left and B is in the bottom right quadrant. Without canonicalizing with respect to rotations, the
description of the two systems is very different, and subsequent neural networks will have to learn to
account for this underlying symmetry. On the other hand, different dynamical systems should yield
different representations. For example, consider the 2 dynamical systems shown in figs. 6b and 6c.
While they only differ in A’s velocity, their dynamics vary greatly: in fig. 6c, A and B are moving
perpendicularly to one another and may crush due to attractive forces. In the canonicalized frame in
fig. 6d, the neighbour representations are indeed very different from fig. 6b.

In the end, we care that our inputs are represented consistently (invariantly) if their relative differences
(translations or rotations) are the same according to the system at hand, regardless of how we obtain
the reference axis for the rotation (intrinsic angular position or another invariant quantity like the
angles of acceleration vectors). Thus, applying both translation and rotation transformation helps even
for objects with no intrinsic viewpoint and orientation, like point masses. We confirm the hypothesis
in an ablation experiment with charged particles, where using only the translation transformation to
form local coordinate frames leads to decreased accuracy, see fig. 5d.

6 Conclusion

In this work we introduced LoCS, a method that introduces canonicalized roto-translated local
coordinate frames for all objects in interacting dynamical systems formalized in geometric graphs.
These coordinate frames grant us global invariance to roto-translations and naturally allow for
anisotropic continuous filtering. We demonstrate the effectiveness of our method in a range of 2D
and 3D settings, outperforming recent state-of-the-art works.

Limitations Many dynamical systems in nature are not formalized as geometric graphs (e.g. social
networks), or are not intrinsically described by angular positions (e.g. elementary particles), in which
case the proposed method is not applicable. Furthermore, although we approximate angular positions
using velocities, our method guarantees full invariance/equivariance to global roto-translations only
in the 2D case, while in 3 dimensions we have an equivariance leakage. We have identified two
modes where local coordinate frames do not exhibit the same large improvements. First, when the
data setting relies, in fact, on a global coordinate frame, like different positions in a basketball court
[56]. Second, when the direction of the local coordinate frames cannot be well-defined, like objects
with 0 velocity (although simply and arbitrarily setting the orientation to 0 works just as well). Last,
a theoretical limitation is that Euler angles, which LoCS also uses, are prone to singularities and
gimbal lock, although in practice we observed no problem.
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A Roto-translation invariance

A.1 Rotations in 2 dimensions

In 2-dimensional settings, there exists a single scalar angular position, the yaw angle θ. Following
eqs. (3) and (5), we compute the rotation matrices Q, R and R̃ as follows:

Q(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(11)

R(θ) = Q(θ)⊕Q(θ) =

(
Q(θ) 02×2

02×2 Q(θ)

)
(12)

R̃(θ) = Q(θ)⊕Q(θ)⊕Q(θ) =

(
Q(θ) 0

Q(θ)
0 Q(θ)

)
(13)

The second rotation matrix Q in R̃ is used to rotate the angular positions. In order to perform the
transformation, we have to express the angular positions in a format suitable for linear transformations;
we do so by transforming them to rotation matrices, perform a matrix multiplication, and then
transform the angular positions back to angle format. In 2 dimensions, we use eq. (11) to convert the
angular positions θ to matrix format. After the rotation, we can convert them back to angle format
using the 2-argument arc-tangent function:

θ = atan2(sin θ, cos θ) (14)

Simplified rotations In 2 dimensions, the computations can be simplified since rotations commute.
First, we show that chained rotations result in angle addition/subtraction, that is:

Q(θi) ·Q(θj) =

(
cos θi − sin θi
sin θi cos θi

)
·
(
cos θj − sin θj
sin θj cos θj

)
(15)

=

(
cos θi cos θj − sin θi sin θj − cos θi sin θj − sin θi cos θj
sin θi cos θj + cos θi sin θj − sin θi sin θj + cos θi cos θj

)
(16)

=

(
cos(θi + θj) − sin(θi + θj)
sin(θi + θj) cos(θi + θj)

)
(17)

= Q(θi + θj) (18)
Following the same approach, we compute the inverse rotation:

Q⊤(θi) ·Q(θj) = Q(−θi) ·Q(θj) = Q(θj − θi) (19)
Thus, instead of rotating the angular positions (expressed in rotation matrix form) using the rotation
matrix Q, in practice we perform the transformation directly to the angles via addition/subtraction,
and replace the matrix Q with the identity matrix I1×1. This results in the following equations that
replace eqs. (3) and (4):

R̃(θ) = Q(θ)⊕ I1×1 ⊕Q(θ) =

(
Q(θ) 0

I1×1

0 Q(θ)

)
(20)

vtj|i = R̃t⊤
i

[
rtj,i, θ

t
j − θti ,u

t
j

]
(21)

Angular position approximation In order to approximate the yaw angle θ using the velocity vector
u = (ux, uy)

⊤, we transform the velocities to polar coordinates and use the azimuth angle of the
polar representation to compute θ as follows:

θ = tan−1

(
uy
ux

)
(22)

In practice, we use the 2-argument arc-tangent function atan2(y, x) to compute θ.

Computing the relative angular position can result in angles outside the range [−π, π), which can
lead to discrepancies. Thus, we wrap the computed angle difference so that it always belongs in
that range. Furthermore, in all cases that angles are not used geometrically (e.g. for rotations), we
normalize them by dividing by π, resulting in an output range of [−1, 1).
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A.2 Rotations 3 dimensions

In 3 dimensions, the computation of rotation matrices is more involved than the 2D case. As described
in section 3.1, we decompose the rotation matrix Q(ω) into 3 chained elemental rotations Qz(θ),
Qy(ϕ) and Qx(ψ). The elemental rotation matrices are computed as follows:

Qz(θ) =

(
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
(23)

Qy(ϕ) =

(
cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

)
(24)

Qx(ψ) =

(
1 0 0
0 cosψ − sinψ
0 sinψ cosψ

)
(25)

Next, we compose the elemental matrices to compute the full rotation matrix:

Q(ω) = Qz(θ)Qy(ϕ)Qx(ψ) (26)

=

(
cosϕ cos θ sinψ sinϕ cos θ − cosψ sin θ cosψ sinϕ cos θ + sinψ sin θ
cosϕ sin θ sinψ sinϕ sin θ + cosψ cos θ cosψ sinϕ sin θ − sinψ cos θ
− sinϕ sinψ cosϕ cosψ cosϕ

)
(27)

Q⊤(ω) = Q⊤
x (ψ)Q

⊤
y (ϕ)Q

⊤
z (θ) (28)

=

(
cosϕ cos θ cosϕ sin θ − sinϕ

sinψ sinϕ cos θ − cosψ sin θ sinψ sinϕ sin θ + cosψ cos θ sinψ cosϕ
cosψ sinϕ cos θ + sinψ sin θ cosψ sinϕ sin θ − sinψ cos θ cosψ cosϕ

)
(29)

R(ω) =

(
Q(ω) 03×3

03×3 Q(ω)

)
(30)

R̃(ω) =

(
Q(ω) 0

Q(ω)
0 Q(ω)

)
(31)

Similar to the 2D case, in order to rotate the angular positions we have to convert them to a format
suitable for linear transformations. We use eqs. (26) and (27) to perform the conversion. After
rotation, we convert the angular positions back to angle format. Using Ω to denote the transformed
angular positions expressed in matrix format, we have the following:

ω =

(
θ
ϕ
ψ

)
=

atan2(Ω1,0,Ω0,0)
sin−1(−Ω2,0)

atan2(Ω2,1,Ω2,2)

 (32)

Angular position approximation Using the velocity angles to approximate angular positions and
create the local coordinate frames in 3 dimensions is not as straight-forward as the 2-dimensional
case. The spherical coordinates representation of the velocity vector gives us 2 angles instead of the 3
that are required to fully describe a 6-DOF 3D rigid body.

In the following equations, we use the notation convention (ρ, θ, ϕ) to represent the radial distance,
azimuthal angle and polar angle, respectively. The transformations from Cartesian to spherical
coordinates are as follows:

ρ =
√
u2x + u2y + u2z (33)

θ = tan−1

(
uy
ux

)
(34)

ϕ = cos−1

(
uz
ρ

)
(35)

In practice, similar to the 2-dimensional setting, we use the atan2 function to compute θ. Furthermore,
we add ϵ = 1e− 8 to the denominator in eq. (35) and clamp the fraction in the range [−1, 1] to avoid
numerical instabilities that may occur, especially during backpropagation.
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Having access to 2 angular positions, we compute the rotation matrix Q as follows:

Q(ω)
ψ=0
= Qz(θ)Qy(ϕ) =

(
cosϕ cos θ − sin θ sinϕ cos θ
cosϕ sin θ cos θ sinϕ sin θ
− sinϕ 0 cosϕ

)
(36)

Q⊤(ω)
ψ=0
= Q⊤

y (ϕ)Q
⊤
z (θ) =

(
cosϕ cos θ cosϕ sin θ − sinϕ
− sin θ cos θ 0

sinϕ cos θ sinϕ sin θ cosϕ

)
(37)

Finally, similar to the 2-dimensional setting, we normalize relative angular positions so that their
output range is [−1, 1).

A.3 Proof of roto-translation invariance

Our method explicitly infers the graph structure over a discrete latent graph and simultaneously learns
the dynamical system. Learning the graph structure is a roto-translation invariant task; we want
to predict the same edge distribution for each pair of vertices regardless of the global rotation of
translation. On the other hand, trajectory forecasting is a roto-translation equivariant task; a global
translation and rotation to the input trajectories should affect the output trajectories equivalently. In
this section, we derive the proof on roto-translation invariance/equivariance.

Let Qg ∈ RD×D be a global rotation matrix in D dimensions and τg ∈ RD×1 be a global translation
vector. As explained in section 2.1, input trajectories are described by the states xti = [pti,u

t
i].

Similarly, we use vti = [pti,ω
t
i ,u

t
i] to denote the augmented states, described by the linear position,

angular position and linear velocity. Finally, we introduce the notation X and V to denote the set of
states and augmented states, respectively, organized in matrix form.

In the following equations, we remove time indices to reduce clutter. Similar to eq. (3) we define the
matrices Rg and R̃g . We have:

Rg = Qg ⊕Qg (38)

R̃g = Qg ⊕Qg ⊕Qg (39)

Equivalently, we define the augmented translation vectors δg and δ̃g:

δg = [τg,0D] (40)

δ̃g = [τg,0D,0D] (41)

The definition above holds because velocities and angular positions are translation invariant.

First, we will prove that the transformation to the local coordinate systems is invariant to global
translations and rotations. Let J denote the function that converts the augmented states to the local
coordinate frames. It is formulated as follows:

vj|i = J(V)j (42)

= R̃⊤(ωi)[pj − pi,ωj ,uj ] (43)

= R̃⊤(ωi)[rj,i,ωj ,uj ] (44)

Local coordinate frames translation invariance To prevent the notation from clutter, in the
following equations, we will slightly abuse mathematical notation and use the convention V + δg to
denote the translation of each augmented state in V. Programmatically, we can say that we broadcast
δg to match the size of V.

J(V + δg)j = R̃⊤(ωi)[pj + τg − (pi − τg),ωj ,uj ] (45)

= R̃⊤(ωi)[rj,i,ωj ,uj ] (46)
= J(V)j (47)
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Local coordinate frames rotation invariance For the canonicalization of the local coordinate
systems, we use the matrices R̃i = R̃(ωi). These matrices transform under global rotation via the
following transformation:

R̂i = Rg ·R(ωi) (48)

R̂⊤
i = R⊤(ωi) ·R⊤

g (49)
ˆ̃Ri = R̃g · R̃(ωi) (50)

ˆ̃R
⊤
i = R̃⊤(ωi) · R̃⊤

g (51)

Then, we proceed as follows:

J
(
R̃g ·V

)
j
= ˆ̃R

⊤
(ωi) · [Qg · pj −Qg · pi,Qg · ωj ,Qg · uj ] (52)

= R̃⊤(ωi) · R̃⊤
g · [Qg · rj,i,Qg · ωj ,Qg · uj ] (53)

= R̃⊤(ωi) · R̃⊤
g · R̃g · [rj,i,ωj ,uj ] (54)

= R̃⊤(ωi) · [rj,i,ωj ,uj ] (55)
= J(V)j (56)

Encoder roto-translation invariance Next, we will prove that the encoder is rotation and trans-
lation invariant. Let F denote the encoder. The encoder takes as inputs the set of roto-translated
augmented states Vlocal =

{
vj|i | j, i ∈ {1, . . . , N}

}
. We have already proven that these inputs are

invariant to global translations and rotations. Thus, it follows that the encoder is also roto-translation
invariant.

Decoder roto-translation equivariance The decoder takes as inputs the set of roto-translated
augmented states Vlocal =

{
vj|i | j, i ∈ {1, . . . , N}

}
as well as the predicted latent edges zj,i. We

use Z = {zj,i | j, i ∈ {1, . . . , N}, j ̸= i} to denote the set of all latent edges.

To prove that the decoder is equivariant to global rotations and translations, we will split its func-
tionality into 2 consecutive components. Let G be the first component that predicts the differences
in position and velocity ∆x in the local coordinate systems. Let H be the second component that
transforms the predictions from the local coordinate systems to the global coordinate system, as
described by eq. (70). The first part of the decoder takes as inputs the augmented states Vlocal as well
as the latent edges Z. Z is the output of the encoder, and as we proved earlier, it is invariant. Vlocal is
also invariant. Hence, G is roto-translation invariant.

Finally, we have to prove that H is equivariant to global translations and rotations. H is a function of
X and Vlocal and is defined as H(X,Vlocal)i = xi +R(ωi) ·G(Vlocal)i.

First, we will prove that H is translation equivariant. We have the following:

H(X,Vlocal)i = xi +R(ωi) ·G(Vlocal)i (57)

H
(
X+ δg,Vlocal + δ̃g

)
i
= xi + δg +R(ωi) ·G

(
Vlocal + δ̃g

)
i

(58)

= xi + δg +R(ωi) ·G(Vlocal)i (59)
= H(X,Vlocal)i + δg (60)

Next, we will prove that H is rotation equivariant. We have the following:

H
(
Rg ·X, R̃g ·Vlocal

)
i
= Rg · xi +Rg ·R(ωi) ·G

(
R̃g ·Vlocal

)
i

(61)

= Rg · (xi +R(ωi) ·G(Vlocal)i) (62)
= Rg ·H(X,Vlocal)i (63)
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B Implementation details

B.1 LoCS

Encoder & Prior The embeddings h
(2)
j,i are fed into 2 LSTMs [22], one forward in time that

computes the prior and one backwards in time for the encoder. The hidden state from the forward
LSTM is used to compute the prior distribution, while the hidden states from both the forward and
the backward LSTM are concatenated to compute the encoder distribution, according to the following
equations:

ht(j,i),prior = LSTMprior

(
h
(2)
j,i ,h

t−1
(j,i),prior

)
(64)

ht(j,i),enc = LSTMenc

(
h
(2)
j,i ,h

t+1
(j,i),enc

)
(65)

pϕ
(
zt|x1:t, z1:t−1

)
= softmax

(
fprior

(
ht(j,i),prior

))
(66)

qϕ
(
ztj,i|x

)
= softmax

(
fenc

([
ht(j,i),prior,h

t
(j,i),enc

]))
(67)

The functions fenc, fprior are MLPs that map the hidden states to RK , where K is the number of latent
edge types.

Decoder Following [19, 27], we use 2 different decoders based on whether the governing dynamics
are Markovian. In both cases, the decoders have similar structure with [19, 27]; the main difference
is that we operate entirely on the roto-translated local coordinate frames. In order to convert our
predictions back to the global coordinate frame, we perform an inverse rotation by Rt

i = R(ωti) =
Q(ωti)⊕Q(ωti).

Markovian decoder In many applications, such as dynamical systems in physics, the governing
dynamics satisfy the Markov property pθ(xt+1|x1:t, z1:t) = pθ(x

t+1|xt, zt). In this case, we use the
following decoder:

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i

])
(68)

mt
i = f (3)v

g(3)v (vti|i)+ 1

|N (i)|
∑

j∈N (i)

mt
j,i

 (69)

µt+1
i = xti +Rt

i · f (4)v

(
mt
i

)
(70)

p(xt+1
i |xt, zt) = N

(
µt+1
i , σ2I

)
(71)

The functions f (3)v , f
(4)
v and fk, k ∈ {1, . . .K} are MLPs, while g(3)v is a linear layer. The output of

the model is the mean estimate of a multivariate isotropic Gaussian distribution with fixed variance.

Recurrent decoder In most real-world applications, the Markovian assumption does not hold. In
this case we use a recurrent decoder.

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i

])
(72)

mt
i = f (3)v

g(3)v (vti|i)+ 1

|N (i)|
∑

j∈N (i)

mt
j,i

 (73)

htj,i =
∑
k

zt(j,i),kg
k
([
htj ,h

t
i

])
(74)

nti =
1

|N (i)|
∑

j∈N (i)

ht(j,i) (75)

ht+1
i = GRU

([
nti,m

t
]
,hti
)

(76)
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µt+1
i = xti +Rt

i · f (4)v

(
ht+1
i

)
(77)

p(xt+1
i |x1:t, z1:t) = N

(
µt+1
i , σ2I

)
(78)

The functions gk, k ∈ {1, . . .K} are MLPs. The GRU block [7] is identical to the one used in [27].

Loss Following [19], we train our models by minimizing the Evidence Lower Bound (ELBO),
which comprises the reconstruction loss of the predicted trajectories (positions and velocities) and
the KL divergence.

L(ϕ, θ) = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||pϕ(z|x)] (79)

As mentioned earlier, we assume the outputs follow an isotropic Gaussian distribution with fixed
variance. The reconstruction loss and the KL divergence take the following form:

Eqϕ(z|x)[log pθ(x|z)] = −
∑
i

∑
t

||xti − µti||
2σ2

+
1

2
log
(
2πσ2

)
(80)

KL[qϕ(z|x)||pϕ(z|x)] =
T∑
t=1

H(qϕ(z
t
ji|x))−

∑
zt
ji

qϕ(z
t
ji|x) log pθ(ztji|x1:t, z1:t−1)

 (81)

H denotes the entropy operator. In all experiments, we set σ2 = 10−5.

Spherical coordinate relative positions Many works in the literature [41, 44] employ distance-
based message-passing steps and filters as a means to better model interactions. We also find that
explicitly incorporating Euclidean distances is useful in practice. We augment the canonicalized
states vj|i with the spherical representations of the relative positions rj,i. We denote the spherical
relative positions as sj,i. They are computed as follows:

stj,i = cart2spherical
(
Qt⊤(ωi) · rtj,i

)
(82)

The spherical representations are computed within the roto-translated coordinate frames and thus,
have no effect on the roto-translation invariance. We modify eq. (6), omitting the time indices for
clarity:

h
(1)
j,i = f (1)e

([
vj|i, sj,i,vi|i

])
(83)

Similarly, we modify eqs. (68) and (72) as follows:

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i, s
t
j,i,v

t
i|i

])
(84)

Anisotropic filtering The anisotropic filters presented in section 3.4 are used to compute the latent
edge embeddings. Specifically, we replace the filters in eq. (6) in the encoder. The filter generating
network is a 2-layer MLP with ELU [9] activation in the hidden layer. In the inD [4] experiment, we
also use anisotropic filters in the decoder. These filters replace the filters in eq. (72). In this case, we
use a 2-layer MLP with tanh activation in the hidden layer. In all experiments, we use the spherical
relative positions as input to the filter generating network instead of the Cartesian relative positions.
Using ∆ptj,i =

[
stj,i,Q

t⊤(ωi) · ωtj
]

to denote the canonicalized relative linear and angular positions,
the encoder and decoder filter generating networks are formulated as:

h
(1),t
j,i = WF

(
∆ptj,i

)
·
[
vtj|i, s

t
j,i,v

t
i|i

]
(85)

mt
j,i =

∑
k

zt(j,i),kW
k
F
(
∆ptj,i

)
·
([

vtj|i, s
t
j,i,v

t
i|i

])
(86)

B.2 NRI & dNRI

We use the official dNRI implementation from https://github.com/cgraber/cvpr_dNRI. We
use the same repository for its NRI implementation as well.
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B.3 EGNN

We use the official EGNN implementation from https://github.com/vgsatorras/egnn. In all
experiments we use the EGNN model with position and velocity inputs/outputs. Each layer is defined
as hl+1,pl+1,ul+1 = EGCL

(
hl,pl,ul

)
.

The hidden state at the input layer h0
i is computed via a linear layer ψh that embeds the input (scalar)

speed of each node to the hidden dimension of the model, h0
i = ψh

(∥∥u0
i

∥∥). Each EGNN layer is
formulated as follows:

mj,i = ϕe

(
hli,h

l
j ,
∥∥plj − pli

∥∥2
2

)
(87)

ul+1
i = ϕv

(
hli
)
uli +

1

|N (i)|
∑

j∈N (i)

(
plj − pli

)
· ϕx(mj,i) (88)

pl+1
i = pli + ul+1

i (89)

mi =
∑

j∈N (i)

ϕw(mj,i) ·mj,i (90)

hl+1
i = ϕh

(
hli,mi

)
(91)

The functions ϕe, ϕv, ϕx, ϕh, ϕw are MLPs with learnable parameters that closely follow the original
work. More specifically, the functions ϕe, ϕv, ϕx and ϕh are 2-layer MLPs, and the function ϕw is a
linear layer with a sigmoid activation used to weigh the messages before aggregation.

The EGNN model comprises 4 layers and the hidden dimensions in all layers are 64. The training and
evaluation schemes are identical to the other models, except that the model is trained by minimizing
the negative log-likelihood of a Gaussian distribution of the positions and velocities, following
Equation 80.

B.4 Computing resources

We ran all experiments on internal clusters using single GPU jobs. 3 different GPU models were used
in total, namely the Nvidia RTX 2080 Ti, Nvidia GTX 1080 Ti, and Nvidia TitanX. The source code
was written in PyTorch [61], version 1.4.0 with CUDA 10.0.

B.5 Hyperparameters & training details

For the synthetic experiment, we follow [19] and train models for 200 epochs. We use 2 edges types
and hardcode the first edge type to indicate absence of interactions, with a no-edge prior of 0.9. For
the charged particles [27], we use 2 edges types with a uniform prior and train the models for 200
epochs. For inD [4], we follow [19] and train models for 400 epochs. We use 4 edge types and
hardcode the first to indicate absence of interactions. For motion capture [10] subject #35, we follow
[19] and train models for 600 epochs. We use 4 edge types and hardcode the first to indicate absence
of interactions. In all experiments, we train LoCS using Adam [25] with a learning rate of 5e−4.

Encoder & Prior f
(1)
v and f (2)e are 2-layer MLPs with ELU [9] activations after each layer and

Batch Normalization [58] at the end, with 256 hidden and output dimensions. g(1)v is a linear layer
with 256 output dimensions. LSTMprior and LSTMenc are LSTMs [22] with 64 hidden dimensions.
fprior and fenc are 3-layer MLPs with ELU activations after the first 2 layers, 128 hidden dimensions,
and K output dimensions, where K is the number of latent edge types. The filter generating network
WF is a 2-layer MLP, with ELU after the first layer, 256 hidden dimensions. For the experiment on
inD [4], we use 64 hidden dimensions for the filter generating network instead.

Decoder g
(3)
v is a linear layer with 256 output dimensions. fk are 2-layer MLPs with ReLU [60]

activations after each layer and gk are 2-layer MLPs with tanh activations after each layer. f (3)v is
the identity function and f (4)v is a 3-layer MLP with ReLU activations after the first 2 layers, 256
hidden dimensions and 2D output dimensions.
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Groundtruth LoCS (Ours)
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NRI

0.135

EGNN
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0.115 0.272 1.029 0.348

0.004 0.345 0.151 0.344

0.060 1.975 1.991 0.595

0.007 0.048 0.622 0.863

0.001 0.158 0.155 0.272

Figure 7: Qualitative results on synthetic dataset, scenes #0 – #5

The filter generating network WF is a 2-layer MLP, with tanh activation after the first layer and
256 hidden dimensions. For the experiment on inD [4], we use 64 hidden dimensions for the filter
generating network instead.

The GRU block [7] in the recurrent decoder is identical to the one used in [27], with 256 hidden
dimensions.

C Qualitative results

C.1 Synthetic

Figure 7 shows comparative qualitative results for the synthetic dataset [19]. The numbers below
each sub-figure represent respective MSE errors.
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C.2 Charged

Figure 8 shows comparative qualitative results for 3D charged particles [27]. The numbers below
each sub-figure represent respective errors.

C.3 InD

Figure 9 shows comparative qualitative results for inD [4].

C.4 Charged - Interactive

Figure 10 shows comparative qualitative results for the highly interactive subset of 3D charged
particles. The numbers below each sub-figure represent respective errors.

D Quantitative results

D.1 Charged particles

Figure 11 shows MSE and L2 errors for charged particles [27].

D.2 Traffic trajectory forecasting

Figure 12 shows MSE and L2 errors for inD [4].

D.3 Motion capture

Figure 13 shows MSE and L2 errors for motion capture [10], subject #35.

D.4 Ablation experiments

The following figures show the complete error curves for the ablation experiments. Figure 14 shows
the errors for the highly interactive charged particles subset. Figure 15 shows the results of training
dNRI using speed normalization. Figure 16 shows the impact of anisotropic continuous filtering
in our method. The roto-translated local coordinate frames already outperform compared methods,
while incorporating the anisotropic filters boosts performance even further. Finally, fig. 17 shows the
impact of rotation in local coordinate frames, specifically in scenarios without intrinsic orientations,
such as charged particles.

E Version history

This is version v2 of the paper. Compared to version v1 we have:

• Removed the dependency on PyTorch3D [62] from the source code and updated the manuscript
accordingly. More specifically, we have implemented our own matrix_to_euler_angles for
the ZYX convention. Our implementation is a simplification of the aforementioned function and is
functionally identical to it.
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Figure 8: Qualitative results on charged particles, scenes #0 – #5
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Figure 10: Qualitative results on interactive subset of charged particles, scenes #0 – #5
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Figure 11: Results on Charged particles dataset
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Figure 12: Results on InD dataset
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Figure 13: Results on motion capture (#35)
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Figure 14: Results on Charged particles interactive subset
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Figure 15: Results on synthetic dataset; impact of speed norm normalization
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Figure 16: Results on InD dataset; impact of anisotropic filtering
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Figure 17: Results on charged particles dataset; impact of rotation in roto-translated local coordinate
frames
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