
Conditional Cone Beam Neural Tomography —
Improving neural field-based cone beam CT reconstruction using a novel conditioning method
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abstract —

To improve memory efficiency and reconstruction speed of deep 
learning-based Cone Beam CT reconstruction (CBCT), we optimise a 
neural field-based surrogate of the CBCT acquisition process 
using projection data. 
To increase noise resistance and leverage anatomical 
consistencies, we use neural fields conditioned through a patient-
specific learned field of modulations: neural modulation fields (NMF).
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2. experiments —

density model: Values for integral along a ray  from source to detector are modelled as neural field .r : T → ℝ3 fθ : ℝ3 → ℝ1.

1.

Coordinates  are embedded in multiresolution hash-encoding , passed through  linear layers.r(t) h(r(t)) L2.

2.

conditioning: To leverage anatomical consistencies over patients, we model density for a patient  by modulating the 
activations  of a conditional shared neural field , by a patient-specific Neural Modulation Field (NMF) .
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3.

This conditioning function learns a field of  FiLM modulations over the input space  for a patient . γ, β ℝ3 pi4.

4.

optimisation: The line integral  is supervised using the projection value observed at the corresponding 
detector pixel location. 
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3. conclusion —
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Tab. 1. Mean  standard deviation of metrics over test set for FDK, 
Iterative, LIRE-L, NAF, and CondCBNT (ours). LIRE-L slightly 
outperforms CondCBNT but requires more GPU memory. Our 
method excels with less memory and comparable runtime.
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Fig. 3. Ground truth 
and reconstructions 
using all the methods 
applied to noisy 
projections. Top 50, 
bottom 400 
projections. Grayscale 
with density in 

. Our 
method does not 
overfit the noise and 
maintains contrast.
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Fig. 2. Using noisy projections, the 
percentage of the best PSNR  that 
a model can reach over the number 
of steps required to achieve it. 
CondCBNT converges 
significantly faster.
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• We improve noise resistance of CBCT reconstruction 
methods by sharing a conditional neural field over 
scans from different patient. 

• We propose learning a continuous, local conditioning 
function through sample-specific Neural Modulation 
Field, which modulates activations in the conditional 
neural field to express volume-specific details. 

• CondCBNT represents an efficient improvement over 
previous approaches in memory scalability and quality.


