Conditional Cone Beam Neural Tomography —

Improving neural field-based cone beam CT reconstruction using a novel conditioning method
authors: S. Papa, D.M. Knigge, N. Moriakov, R. Valperga, M. Kofinas, J.J. Sonke, E. Gavves

% of best PSNR

O abstract —

links — affiliations —

odl UNIVERSITY

- = . . X
O improve memory efficiency and reconstruction speed of deep il OF AMSTERDAM
learning-based Cone Beam CT reconstruction (CBCT), we optimise a NETHERLANDS%}
neural field-based surrogate of the CBCT acquisition process NeTTUTe L5
using projection data.
To increase noise resistance and leverage anatomical A ':?:T ab

consistencies, we use neural fields conditioned through a patient-
specific learned field of modulations: neural modulation fields (NMF).
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2. Coordinates r(¢) are embedded in multiresolution hash-encoding A(x(#)), passed through L linear layers.

conditioning: 3. To leverage anatomical consistencies over patients, we model density for a patient p; by modulating the

activations a' of a conditional shared neural field fé,, by a patient-specific Neural Modulation Field (NMF) ;.

4. This conditioning function learns a field of ¥,  FILM modulations over the input space R3 for a patient p..

optimisation: 5. The line integral —chvzl fo(r(2.) | p;)Ar . is supervised using the projection value observed at the corresponding

detector pixel location.
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Tab. 1. Mean £ standard deviation of metrics over test set for FDK,
lterative, LIRE-L, NAF, and CondCBNT (ours). LIRE-L slightly
outperforms CondCBNT but requires more GPU memory. Our
method excels with less memory and comparable runtime.
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Step

e \\Ne improve noise resistance of CBCT reconstruction
methods by sharing a conditional neural field over
scans from different patient.

e \We propose learning a continuous, local conditioning
function through sample-specific Neural Modulation
Field, which modulates activations in the conditional
neural field to express volume-specific details.

e CondCBNT represents an efficient improvement over
previous approaches in memory scalability and quality.



