Conditional Cone Beam Neural Tomography — Improving neural field-based cone beam CT reconstruction using a novel conditioning method authors: S. Papa, D.M. Knigge, N. Moriakov, R. Valperga, M. Kofinas, J.J. Sonke, E. Gavves abstract — $\mathbf{0}$ links affiliations — UNIVERSITY To improve memory efficiency and reconstruction speed of deep **OF AMSTERDAM** learning-based Cone Beam CT reconstruction (CBCT), we optimise a neural field-based surrogate of the CBCT acquisition process using projection data. To increase noise resistance and leverage anatomical consistencies, we use neural fields conditioned through a patient-Elekta **specific** learned field of **modulations**: *neural modulation fields (NMF)*. *method* —

*density model:*Values for integral along a ray **r** : *T* → ℝ³ from source to detector are modelled as neural field *f_θ* : ℝ³ → ℝ.
Coordinates **r**(*t*) are embedded in multiresolution hash-encoding *h*(**r**(*t*)), passed through *L* linear layers. *conditioning:*To leverage anatomical consistencies over patients, we model density for a patient *p_i* by modulating the activations *a^l* of a conditional shared neural field *f_θ*, by a patient-specific *Neural Modulation Field* (NMF) *φ_i*.
This conditioning function learns a field of *γ*, *β* FiLM modulations over the input space ℝ³ for a patient *p_i*. *optimisation: the line integral -Σ^N_{c=1}f_θ(r(t_c) | <i>p_i*)Δ**r**_c is supervised using the projection value observed at the corresponding detector pixel location.

Tab. 1. Mean ± standard deviation of metrics over test set for FDK, Iterative, LIRE-L, NAF, and CondCBNT (ours). LIRE-L slightly outperforms CondCBNT but requires more GPU memory. **Our method excels with less memory and comparable runtime**.

Fig. 3. Ground truth and reconstructions using all the methods applied to noisy projections. Top 50, bottom 400 projections. Grayscale with density in [0 - 0.04]. Our method does not overfit the noise and maintains contrast.

		Noisy			Noise-free			
P.	Method	PSNR (†)	SSIM (†)	Time (s/vol)	PSNR (†)	SSIM (†)	Time (s/vol)	Mem. (MiB)
50	FDK	14.54 ± 2.90	$.20\pm.07$	0.8	16.09 ± 3.22	$.43\pm.09$	0.8	100
	Iterative	26.36 ± 2.11	$.70\pm.08$	7.7	27.13 ± 2.80	$.71\pm.08$	30.8	300
	LIRE-L	29.48 ± 2.07	$.83\pm.05$	3.9	-	-	-	2.1k
	NAF	22.83 ± 2.24	$.58\pm.10$	161	24.26 ± 2.52	$.72\pm.08$	582	18
	CondCBNT	28.31 ± 1.22	$.80\pm.05$	124	30.21 ± 1.42	$.86\pm.05$	647	96
400	FDK	16.43 ± 3.38	$.45\pm.12$	7	16.71 ± 3.47	$.65\pm.09$	7	100
	Iterative	28.38 ± 3.27	$.78\pm.11$	87.4	31.40 ± 6.22	$.91\pm.07$	174	600
	LIRE-L	30.70 ± 2.25	$.88\pm.05$	12.8	-	-	-	4k
	NAF	25.93 ± 2.45	$.75\pm.08$	275	25.04 ± 2.91	$.77\pm.08$	580	205
	CondCBNT	29.89 ± 1.39	$.86\pm.05$	763	30.63 ± 1.43	$.88\pm.04$	595	96

2.

Fig. 2. Using noisy projections, the percentage of the best PSNR ↑ that a model can reach over the number of steps required to achieve it. **CondCBNT converges significantly faster**.

conclusion —

3.

- We **improve noise resistance** of CBCT reconstruction methods by **sharing a conditional neural field over scans from different patient**.
- We propose learning a continuous, local conditioning function through sample-specific *Neural Modulation Field*, which modulates activations in the conditional neural field to express volume-specific details.
- CondCBNT represents an efficient **improvement** over previous approaches in **memory scalability and quality**.