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Abstract

Systems of interacting objects often evolve under the influence of field effects
that govern their dynamics, yet previous works have abstracted away from such
effects, and assume that systems evolve in a vacuum. In this work, we focus
on discovering these fields, and infer them from the observed dynamics alone,
without directly observing them. We theorize the presence of latent force fields,
and propose neural fields to learn them. Since the observed dynamics constitute the
net effect of local object interactions and global field effects, recently popularized
equivariant networks are inapplicable, as they fail to capture global information. To
address this, we propose to disentangle local object interactions –which are SE(n)
equivariant and depend on relative states– from external global field effects –which
depend on absolute states. We model interactions with equivariant graph networks,
and combine them with neural fields in a novel graph network that integrates field
forces. Our experiments show that we can accurately discover the underlying fields
in charged particles settings, traffic scenes, and gravitational n-body problems, and
effectively use them to learn the system and forecast future trajectories.

1 Introduction

Figure 1: N-body system with underlying gravita-
tional field. We uncover fields that underlie inter-
acting systems using only the observed trajectories.

Systems of interacting objects are omnipresent
in nature, with examples ranging from the sub-
atomic to the astronomical scale –including col-
liding particles and n-body systems of celestial
objects– as well as settings that involve human
activities, governed by social dynamics, like traf-
fic scenes. The majority of these systems does
not evolve in a vacuum; instead, systems evolve
under the influences of underlying fields. For
example, electromagnetic fields may govern the
dynamics of charged particles, while galaxies
swirl around supermassive black holes that create gravitational fields. In traffic scenes, the road
network and traffic rules govern the actions of traffic scene participants. Despite the ubiquity of fields,
previous works on modelling interacting systems have only focused on the in vitro case of systems
evolving in a vacuum.

Earlier work on learning interacting systems proposed graph networks [3, 23, 40]. Recently, state-of-
the-art methods for interacting systems propose equivariant graph networks [50, 41, 24, 5, 10] to
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model dynamics while respecting the symmetries that often underlie them. These networks exhibit
increased robustness and performance, while maintaining parameter efficiency due to weight sharing.
They are, however, not compatible with underlying field effects, since they can only capture local
states, such as relative positions, while fields depend on absolute states (e.g. positions or orientations).
In other words, global fields violate the strict equivariance hypothesis.

Within the context of modelling interacting systems, a function f that predicts future trajectories
is SE(3) equivariant –equivariant to the special Euclidean group of translations and rotations– if
f(Rx+τ ) = Rf(x)+τ for a translation vector τ and a rotation matrix R. While strict equivariance
holds in idealized settings, it does not hold in many real-world settings. That is, even if the symmetries
exist in a particular setting, they only manifest themselves in local interactions, yet they are entangled
with global effects that stem from absolute states. N-body systems from physics, for example, exhibit
E(3) symmetries, since gravitational forces only depend on relative positions. Dynamics, however,
may be influenced by external force fields, e.g. black holes, which are either unknown or not subject
to transformations. Thus, strict equivariance is violated, since equivariant object interactions are
entangled with global field effects.

We make the following contributions. First, we introduce neural fields to discover global latent force
fields in interacting dynamical systems, and infer them by observing the dynamics alone. Second,
we introduce the notion of entangled equivariance that intertwines global and local effects, and
propose a novel architecture that disentangles equivariant local object interactions from global field
effects. Third, we propose an approximately equivariant graph network that extends equivariant graph
networks by using a mixture of global and local information. Finally, we conduct experiments on
a number of field settings, including real-world traffic scenes, and extending state-of-the-art setups
from the literature. We observe that explicitly modelling fields is mandatory for effective future
forecasting, while their unsupervised discovery opens a window for model explainability.

We term our method Aether, inspired by the postulated medium that permeates all throughout space
and allows for the propagation of light.

2 Background

Interacting dynamical systems An interacting dynamical system comprises trajectories of N
objects in d dimensions, d ∈ {2, 3}, recorded for T timesteps. The snapshot of the i-th object at
timestep t describes the state xt

i = [pt
i,u

t
i], i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, where p ∈ Rd denotes

the position and u ∈ Rd denotes the velocity, using [·, ·] to denote vector concatenation along the
feature dimension. We are interested in forecasting future trajectories, i.e. predict the future states for
all objects and for a number of timesteps. Interacting dynamical systems can be naturally formalized
as spatio-temporal geometric graphs [3, 23, 14], G = {Gt}Tt=1, with graph snapshots Gt = (Vt, Et) at
different time steps. The set of graph nodes Vt = {vt1, . . . , vtN} describes the objects in the system; vti
corresponds to xt

i. The set of edges Et ⊆
{(
vtj , v

t
i

)
|
(
vtj , v

t
i

)
∈ Vt × Vt

}
describes pair-wise object

interactions;
(
vtj , v

t
i

)
corresponds to an interaction from node j to node i. Finally, N (i) denotes the

neighbors of node vi.

Local coordinate frame graph networks Local coordinate frame graph networks have been popu-
larized in recent years [24, 26, 10, 52, 20, 30] as a method to achieve SE(3) –or E(3)– equivariance,
due to their low computational overhead and high performance. Kofinas et al. [24] proposed LoCS
and introduced local coordinate frames for all node-objects at all timesteps. They define augmented
node states vt

i = [pt
i,ω

t
i ,u

t
i], where ωt

i denotes the angular position of node i at timestep t. Kofinas
et al. [24] use velocities as a proxy to angular positions, while Luo et al. [26] use another network
that predicts latent orientations. Each local coordinate frame is translated to match the target object’s
position and rotated to match its orientation. Considering the representation of node j in the local
coordinate frame of node i, denoted as vt

j|i, they first compute the relative positions rtj,i = pt
j − pt

i

and then they rotate the state using the matrix representation of the angular position Q(ωt
i):

vt
j|i = R̃

(
ωt

i

)⊤[
rtj,i,ω

t
j ,u

t
j

]
, (1)
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where R̃(ωt
i) = Q(ωt

i)⊕Q(ωt
i)⊕Q(ωt

i), and ⊕ denotes a direct sum. LoCS then proposes a graph
neural network [42, 25, 13] that uses local states:

ht
j,i = fe

([
vt
j|i,v

t
i|i

])
, (2)

∆xt+1
i|i = fv

gv(vt
i|i

)
+ C

∑
j∈N (i)

ht
j,i

, (3)

where fv, fe, and gv are MLPs, and C = 1/|N (i)|. The output of this graph network comprises
differences in positions and velocities from the previous time step, in the local frame of each object.
Since these outputs are invariant, LoCS performs an inverse transformation to convert them back
to the global coordinate frame and achieve equivariance, xt+1

i = xt
i + R(ωt

i) · ∆xt+1
i|i , where

R(ωt
i) = Q(ωt

i)⊕Q(ωt
i).

Neural fields Finally, we make a brief introduction to neural fields. Neural fields, or coordinate-
based MLPs, are a class of neural networks that parameterize fields using neural networks (see
Xie et al. [54] for a survey). They take as input states like spatial coordinates and predict some
quantity. Neural fields can learn prior behaviors and generalize to new fields via conditioning on
a latent variable z that encodes the properties of a field. Perez et al. [33] proposed Feature-wise
Linear Modulation (FiLM), a conditioning mechanism that modulates a signal. It comprises two
sub-networks α, β that perform multiplicative and additive modulation to the input signal, and can be
described by FiLM(h, z) = α(z)⊙ h+ β(z), where z is the conditioning variable, h is the signal to
be modulated, and α, β are MLPs that scale the signal, and add a bias term, respectively.

3 Method

In this section, we present our method, termed Aether. First, we describe the notion of entangled
equivariance, and introduce our architecture that disentangles global field effects from local object
interactions. Then, we continue with the description of the neural field that infers latent fields
by observing the dynamics alone. Finally, we formulate approximately equivariant global-local
coordinate frame graph networks. We note that throughout this work, we focus on fields that are
unaffected by the observable objects and their interactions thereof.

3.1 Aether

Interacting dynamical systems rarely evolve in a vacuum, rather they evolve under the influence
of external field effects. While object interactions depend on local information, the underlying
fields depend on global states. On the one hand, locality in object interactions stems from the fact
that dynamics obey a number of symmetries. By extension, object interactions are equivariant to a
particular group of transformations. On the other hand, field effects are non-local; they depend on
absolute object states. Thus, strict equivariance is violated, since equivariant object interactions are
entangled with global field effects. We refer to this phenomenon as entangled equivariance.

Figure 2: Two objects in a gravitational
field. We only observe the total force
exerted at each particle, i.e. the sum of
equivariant pairwise particle forces and
global field effects.

As an example, in Figure 2 we observe a system of two
objects that evolve in a gravitational field. The arrows
positioned on the objects represent the forces exerted on
them. One constituent of the net force is caused by object
interactions, and is thus equivariant, while the other can
be attributed to the gravitational pull. However, we can
only observe the net force at each particle, i.e. the sum
of equivariant pairwise forces and non-equivariant field
effects. Hence, in this system, we say that equivariance
is entangled.

We now propose our architecture that disentangles local
object interactions from global field effects. We model
object interactions with local coordinate frame graph net-
works [24], and field effects with neural fields. During
training, and given a multitude of input systems, neural fields will, in principle, be able to isolate
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global from local effects, since only global effects are recurring phenomena. We hypothesize that
field effects can be attributed to force fields, and therefore, our neural fields learn to discover latent
force fields. The pipeline of our method is shown in Figure 3. Our inputs comprise augmented
states {vt

i} for trajectories of N objects for T timesteps. Since neural fields model global fields,
they depend on absolute states. Thus, we feed the states of the trajectories vt

i –or a subset of state
variables– as input to a neural field that predicts latent forces f ti = f(vt

i).

Input trajectories Query states

vt
i

Encoding

MLP

FiLM

MLP

FiLM

MLP

f ti

Predicted forces

Graph
Aggregation

z

(a) Latent Neural Field

Input trajectories

Query states

Latent
Neural Field

Predicted field

Graph
Neural Network

Predicted trajectories

Groundtruth trajectories

Loss

(b) Aether pipeline

Figure 3: The pipeline of our method, Aether. In the latent neural field (a), a graph aggregation
module summarizes the input trajectories in a latent variable z. Query states from input trajectories,
alongside z, are fed to a neural field that predicts a latent force field. In (b), a graph network integrates
predicted forces with input trajectories to predict future trajectories. The graph aggregation module
and the FiLM layers exist only in a dynamic field setting.

The predicted field forces can be now considered part of the node states, and further, they can be
treated similarly to other state variables like velocities; as vectors, forces are unaffected by the action
of translations, while they covariantly transform with rotations. Thus, moving onward, we can treat
the problem setup as if we were once again back in the strict equivariance regime. We append the
predicted forces f ti for each node-object i and each timestep t to the node states, and transform them
to corresponding local coordinate frames, similarly to Equation (1). Namely, the force exerted on
node j, expressed in the local coordinate frame of node i is computed as: f tj|i = Q⊤(ωt

i)f
t
j . We feed

the new local node states to a local coordinate frame graph network as follows:

ht
j,i = fe

([
vt
j|i, f

t
j|i ,v

t
i|i, f

t
i|i

])
(4)

∆xt+1
i|i = fv

gv([vt
i|i, f

t
i|i

])
+ C

∑
j∈N (i)

ht
j,i

 (5)

xt+1
i = xt

i +R
(
ωt

i

)
·∆xt+1

i|i , (6)

where R(ωt
i) = Q(ωt

i) ⊕Q(ωt
i), C = 1/|N (i)|. The equations above are similar to Equations (2)

and (3), with the addition of the highlighted parts that denote the predicted forces expressed at local
coordinate frames. In practice, in most experiments, we closely follow [23, 14, 24] and formulate our
model as a variational autoencoder [21, 37] with latent edge types. The exact details are presented in
Appendix A.1.2.

3.2 Field discovery

Oftentimes, fields might not be directly observable for us to probe them at will and use them for
supervision. For example, astronomical observations of solar systems and galaxies might not include
black holes, yet we can observe their effects. Moreover, fields are often not even measurable or
quantifiable, or they are defined implicitly. For instance, “social fields” that guide traffic, cannot be
measured or defined explicitly, but we can safely assume they exist. Motivated by these observations,
we design an architecture that performs unsupervised field discovery, while solving the surrogate
supervised task of trajectory forecasting.
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In this work, we aim to discover two different types of fields, which we term “static” and “dynamic”
fields. Static fields refer to settings in which we have a single field shared throughout the whole
dataset. On the other hand, dynamic fields refer to settings in which we have a different field for each
input system, and consequently, fields also differ between train, validation, and test sets.

We now describe neural fields, used in this work, to model the underlying field effects. Neural fields
depend on absolute states and predict latent force fields. When dealing with static fields, we use
unconditional neural fields, i.e. neural fields that are functions only of the query states, as the field
values are common across data samples. Note that unconditional neural fields are not functions of the
input states; they will make the same predictions regardless of the inputs. In contrast, for dynamic
fields, we use a conditional neural field, i.e. a neural field that also depends on a latent vector z ∈ RDz

that represents the underlying field. The latent z will be inferred from the input trajectories and can
be thought of as representing unusual non-equivariant dynamics. We use z to explicitly condition
the neural field, and thus, its general form is f : Rd × SO(d)× Rd × RDz → Rd, where d ∈ {2, 3},
depending on the setting.

During training, both for conditional and unconditional neural fields, we only sample the field at
query states that coincide with the states of the input objects, since we only have supervision about
their future trajectories there.

Static fields We start with the description of unconditional neural fields used in static field settings,
since conditional neural fields share the same backbone. First, we encode the query positions using
Gaussian random Fourier features [46], as follows: γ(p) = [cos(2πBp), sin(2πBp)]

⊤
, where

p ∈ Rd are the query coordinates, and B ∈ R
Dc
2 ×d is a matrix with entries sampled from a Gaussian

distribution, Bkl ∼ N (0, σ2). The variance σ2 can be chosen per task with a hyperparameter sweep.

We encode velocities using a simple linear layer ζ(u) = Wuu. For orientations, in d = 3 dimensions,
we use a unit vector representation for each angle in ω = (θ, ϕ, ψ)

⊤, ω̂ = [cosω, sinω]
⊤. In d = 2

dimensions, we use the same encoding, except that we now have a single angle ω = θ. Then, we use
a linear layer to encode the orientation vectors, δ(ω) = Wωω̂. We finally concatenate the encoded
positions, orientations, and velocities in a single vector that is being fed as input to the neural field.
The neural field is a 3-layer MLP with SiLU [36] activations in-between, and outputs a latent force
field, f(v) = MLP([γ(p), δ(ω), ζ(u)]).

Dynamic fields The neural fields used to model the dynamic fields are conditioned on a latent vector
representation z ∈ RDz that describes prior knowledge about the underlying field, and are defined
as f(v | z). In our case, the latent representation should “summarize” the input graph such that it
isolates only global effects from the field. To that end, we employ a simple global spatio-temporal
attention mechanism, similar to Li et al. [25], that aggregates the input system in a latent vector
representation. First, we define object embeddings oi = GRU

(
Wgx

1:T
i

)
, where Wg is a matrix

used to linearly transform the inputs, and GRU is the Gated Recurrent Unit [7]. We also define
temporal embeddings t = PE(t), where PE are positional encodings [49]. Using these embeddings,
we augment the input as sti = [xt

i,oi] + t. The aggregation is then defined as follows:

z =
∑
i,t

softmax
(
fa
(
sti
))

· fb
(
sti
)
, (7)

where fa : RDs → R, fb : RDs → RDz are 2-layer MLPs with SiLU activations in-between.

After having obtained a latent vector representation z that summarizes the input system, we condition
the neural field using FiLM [33]. We include FiLM layers after the first two linear layers of the neural
field. The exact details are presented in Appendix A.1.1.

3.3 Approximate equivariance with global-local coordinate frames

Equivariant neural networks cannot capture non-local information, such as global field effects. In this
work, we explicitly aim to discover these fields and disentangle them from local object interactions.
An alternative, or rather complementary approach, would be to directly combine global and local
information, following the recently proposed notion of approximate equivariance [51]. Starting
from LoCS [24], we can integrate global information and still operate in local coordinate frames
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by defining an auxiliary node-object corresponding to the global coordinate frame, i.e. an object
positioned at the origin, and oriented to match the x-axis.

Similar to all objects in the system, the full state of the origin node O comprises the concatenation of
its position and velocity, xO = [pO,uO]. We use an “artificial” velocity that matches the x-axis in
order to compute a non-degenerate frame. As such, we have xO = [0, x̂]. The origin state can be
expressed in the local coordinate frame of the i-th object similarly to Equation (1), as follows:

vt
O|i = Rt⊤

i

[
pt
O − pt

i,u
t
O
]
= Rt⊤

i

[
−pt

i,u
t
O
]
. (8)

Since graph networks are permutation equivariant, we need to explicitly distinguish between the
origin node and other nodes. We circumvent that by augmenting each object’s state with the origin
node information expressed in local coordinate frames, extending Equations (2) and (3) to

ht
j,i = fe

([
vt
j|i,v

t
i|i, v

t
O|i

])
, (9)

∆xt+1
i|i = fv

gv([vt
i|i, v

t
O|i

])
+

1

|N (i)|
∑

j∈N (i)

ht
j,i

. (10)

This approach pushes the information in the node states, and removes the need to add the origin node
to the actual graph. We term this method G-LoCS (Global-Local Coordinate FrameS). In practice,
similar to Aether, we formulate G-LoCS as a variational autoencoder [21, 37] with latent edge types.
The full details are presented in Appendix A.2. Finally, in practice, we integrate G-LoCS in Aether,
since it can enhance the performance of our method.

4 Related work

Equivariant graph networks The seminal works of [8, 9, 53] introduced equivariant convolutional
neural networks and demonstrated effectiveness, robustness, and increased parameter efficiency.
Recently, many works have proposed equivariant graph networks [43, 47, 12, 50, 41, 24, 5, 26, 18].
Walters et al. [50] propose rotationally equivariant continuous convolutions for trajectory prediction.
Satorras et al. [41] propose a computationally efficient equivariant graph network that leverages
invariant euclidean distances between node pairs. Kofinas et al. [24] introduce roto-translated local
coordinate frames for all objects in an interacting system and propose equivariant local coordinate
frame graph networks. Brandstetter et al. [5] generalize equivariant graph networks using steerable
MLPs [47] and incorporate geometric and physical information in message passing. Equivariant
graph networks differ from our work since they cannot capture non-local information, while our work
disentangles equivariant local interactions from global effects and captures them both.

Approximate equivariance Recently, a number of works has proposed to shift away from strict
equivariance, in what Wang et al. [51] termed as approximate equivariance. Wang et al. [51] propose
approximately equivariant networks for dynamical systems, by relaxing equivariance constraints
in group convolutions and steerable convolutions. van der Ouderaa et al. [48] propose to relax
strict equivariance by interpolating between equivariant and non-equivariant operations, using non-
stationary kernels that also depend on the absolute input group element. Romero and Lohit [38]
propose Partial G-CNNs that learn layer-wise partial equivariances from data. We note that even
though approximately equivariant networks share similarities with our work, our notion of disentan-
gled equivariance is conceptually different. That is because related work uses the term approximate
equivariance to denote that equivariance is “broken” due to noise or imperfections, while our work
disentangles the system dynamics that are actually equivariant, from the global field effects that are
not, and in fact, might be unaffected by such transformations. Further, to the best of our knowledge,
approximate equivariance has only been studied in the context of convolutional networks, not in the
context of graph networks and interacting systems. Tangentially, Han et al. [15] propose subequiv-
ariant graph networks, and relax equivariance to subequivariance by considering external fields like
gravity. However, they assume a priori known fields that do not require to be inferred by the model.

Neural fields Neural fields have recently exploded in popularity in 3D computer vision, popularized
by NeRF [29]. Since MLPs are universal function approximators [17], neural fields parameterized
by MLPs can, in principle, encode continuous signals at arbitrary resolution. However, neural
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networks can suffer from “spectral bias” [34, 2], i.e. they are biased to fit functions with low
spatial frequency. To address this issue, a number of solutions have been proposed. Tancik et al.
[46] leverage Neural Tangent Kernel (NTK) theory and propose Random Fourier Features (RFF),
showing that they can overcome the spectral bias. They also show that RFF are a generalization of
positional encodings, popularized in recent years in natural language processing by Transformers
[49]. Concurrently, Sitzmann et al. [45] proposed SIREN, neural networks with sinusoidal activation
functions. While neural fields have been used extensively in computer vision problems including 3D
scene reconstruction [31, 28] and differentiable rendering [44, 29], they have not seen wide usage in
dynamical systems. Notably, Raissi et al. [35] proposed Physics-Informed Neural Networks (PINNs),
neural PDE solvers based on neural fields. Finally, Dupont et al. [11] and Zhuang et al. [56] propose
generative models of neural fields.

5 Experiments

We evaluate our proposed method, Aether, on settings that include static as well as dynamic fields.
First, we explore 2D charged particles that evolve under the effect of a static electrostatic field, as
well as 3D particles that evolve under a Lorentz force field [10]. Then, we evaluate our method
on a subset of inD [4] that contains a single location, and thus a static field as well. Finally, we
explore 3D gravitational n-body problems [5] with dynamic fields. Our code, data, and models will
be open-sourced online1.

In most experiments, we compare our method against dNRI [14] and LoCS [24] , two state-of-the-art
networks for sequence-to-sequence trajectory forecasting, as well as G-LoCS. DNRI [14] is a graph
network operating in global coordinates, and is, in principle, able to uncover both the global and the
local dynamics. It is formulated as a VAE [21, 37] with latent edge types and explicitly infers a latent
graph structure. LoCS [24], on the other hand, operates in local coordinates, and is, thus, unable to
uncover the global dynamics. Finally, G-LoCS is in principle able to model both local and global
dynamics effectively. For all methods, we use their publicly available source code.

Our architecture and experimental setup closely follow Graber and Schwing [14], Kofinas et al. [24].
Unless specified differently, our neural field has a hidden size of 512. In charged particles and in
n-body problems, we only use positions as input to the neural field, while in traffic scenes we also
use orientations. The full implementation details are presented in Appendix A.1.2. In all settings,
we report the mean squared error (MSE) of positions and velocities over time. Here we demonstrate
indicative visualizations, and provide more extensive qualitative results in Appendix D.

For the Lorentz force field experiment, we use the official source code from ClofNet [10], and
follow their exact setup. We compare our method against SE(3) Transformers [12], EGNN [41],
and ClofNet [10]. We evaluate methods using the mean squared error between predicted and
groundtruth positions. Since this setting is not a sequence-to-sequence task, we use a simplified
network architecture without a VAE, and following baselines, we make sure that the number of
parameters of our model is approximately equal to other methods. The full implementation details
are presented in Appendix A.1.3.

dNRI LoCS G-LoCS Aether (Ours)

1 5 9 13 17 20
Step

0.0

0.2

0.4

0.6

0.8

1.0

M
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Total Errors
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1 3 5 7 9 11 12
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0.0

0.5
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1 2 3 4 5
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0.00

0.05

0.10

0.15
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Figure 4: Results on (a) electrostatic field, (b) inD, and (c) gravity.

1https://github.com/mkofinas/aether
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5.1 Electrostatic field

Figure 5: Learned Field (left) in electrostatic field
setting compared to groundtruth (right).

First, we study the effect of static fields, i.e. a
single field across all train, validation, and test
simulations. We extend the charged particles
dataset from Kipf et al. [23] by adding a num-
ber of immovable sources. These sources act
like regular particles, exerting forces on the ob-
servable particles, except we ignore any forces
exerted to them, and keep their positions fixed.
We use M = 20 “source” particles and N = 5
“observable” particles. We generate 50,000 sim-
ulations for training, 10,000 for validation and
10,000 for testing. Following Kipf et al. [23],
each simulation lasts for 49 timesteps. During
inference, we use the first 29 steps as input and predict the remaining 20 steps. The full dataset details
are presented in Appendix B.1.

We compare our method against dNRI, LoCS, and G-LoCS. We plot MSE in Figure 4a and L2

errors in Figure 18, and visualize the learned field in Figure 5. We showcase predicted trajectories in
Figure 9 in Appendix D.1. We observe that equivariant methods like LoCS perform poorly, while
the approximately equivariant G-LoCS performs much better than equivariant and non-equivariant
methods. Aether outperforms all other methods, demonstrating that it can disentangle equivariance.
Furthermore, as shown in Figure 5, and Figure 10 in Appendix D.1.1, Aether can effectively discover
the underlying field.

5.2 Lorentz force field

Du et al. [10] introduced a dataset of 3D charged particles evolving under the influence of a Lorentz
force field. Each simulation contains 20 particles. We use the official source code and follow the
exact experimental setup with Du et al. [10]. We show quantitative results in Table 1. Our method
can clearly outperform all other methods by a large margin, reducing the error by 48.6%. We also
note that our method has fewer parameters than ClofNet, and is thus more efficient.

Table 1: Position prediction MSE on Lorentz force field. Results marked with † were taken from
ClofNet [10].

Method MSE (↓) No. parameters

GNN † 0.0908 104,387
SE(3) Transformer † [12] 0.1438 1,763,134
EGNN † [41] 0.0368 134,020
ClofNet † [10] 0.0251 160,964
Aether (ours) 0.0129 132,822

5.3 Traffic scenes

Next, we study the effectiveness of static field discovery in traffic scenes. We use inD [4], a dataset
with real-world traffic scenes that comprises trajectories of pedestrians, vehicles, and cyclists. We
create a subset that contains scenes from a single location. The full dataset details are presented
in Appendix B.2. We divide scenes into 18-step sequences; we use the first 6 time steps as input
and predict the next 12 time steps. We plot MSE in Figure 4b and L2 errors in Figure 19, and
visualize the learned field in Figure 6, and in Figure 15 in Appendix D.2.1. Since the learned field is
a function of positions and orientations, we only visualize it for 4 discrete orientations, namely the
group C4 =

{
0, π2 , π,

3π
2

}
. We showcase predictions in Figure 11 in Appendix D.2. Again, Aether

outperforms all other methods. The discovered field, while hard to interpret, shows high activations
that coincide with road locations and directions, indicating that it can guide objects through the
topology of the road network.
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Figure 6: Discovered field on inD [4]. For clarity, we only visualize the field for discrete input
orientations in C4 =

{
0, π2 , π,

3π
2

}
.

5.4 Gravitational field

We now study the task of dynamic field discovery, i.e. fields that are different across simulations.
We extend the gravity dataset by Brandstetter et al. [5] by adding gravitational sources. We create
a dataset of 50,000 simulations for training, 10,000 for validation and 10,000 for testing. We use
N = 5 particles and M = 1 source. We set the masses of particles to mp = 1, while the source’s
mass is ms = 10. We generate trajectories of 49 timesteps. We use the first 44 steps as input and
predict the remaining 5 steps. We plot the MSE in Figure 4c and L2 errors in Figure 20. We observe
that once again, Aether clearly outperforms other methods.

5.5 Ablation experiments

Table 2: (a) Ablation study on the importance of the learned field. (b) Ablation study on the importance
of a sequential architecture. (c) Ablation study on the choice of equivariant GNN backbone.

(a) Electrostatic field

Method MSE@10 (↓)

Particle Oracle 0.1847
Force Oracle 0.1883
Aether 0.2015

(b) Lorentz force field

Method MSE (↓)

LoCS [24] 0.0238
Aether 0.0129
Parallel Aether 0.0211

(c) Lorentz force field

Method MSE (↓)

EGNN [41] 0.0368
EGNN+Aether 0.0254

Significance of discovered field In a simulated environment like the electrostatic field setting, we
have access to the groundtruth fields and the sources that generate them. We leverage the simulator
to study the significance of the discovered field in the task of trajectory forecasting, and establish
an upper bound to our performance. To that end, we create two “oracle” models that have access
to the groundtruth information, a force oracle and a source oracle. The force oracle is identical to
Aether, but uses the groundtruth forces from the simulator instead of predicting them with a neural
field. The source oracle assumes knowledge of the “field sources”. Thus, there is no longer need
for disentanglement, and the problem is strictly equivariant again. We include the sources as virtual
nodes in the graph, add include edges from the sources to the particles. We describe this oracle in
detail in Appendix A.3. We show the MSE in Table 2a and plot the MSE and L2 errors in Figure 22
in Appendix E.5. We observe that Aether closely follows the two oracle models, and is on par, for
roughly 10 steps. This demonstrates that the discovered field is almost as helpful as the groundtruth.

Learning the global field separately Our architecture connects the neural field with the graph
network sequentially, i.e. the output of neural field is given as input to the graph network. We believe
that this is integral for effective field discovery, as well as overall modelling, since it enables the graph
network to learn to isolate local interactions from the observed net dynamics. We test this hypothesis
with an ablation study, in which we connect the neural field and the graph network in parallel. The
two networks are now working independently, and we only add their predictions at the output. We
term this model Parallel Aether. We provide implementation details in Appendix A.4. We perform the
experiment on the Lorentz field setting, and show results in Table 2b. We also compare both methods
against LoCS, as it is a common backbone in both methods, to demonstrate the performance gain due
to the discovered field. We can see that even though the parallel architecture boosts performance, it is
clearly not as effective as the sequential approach, which verifies our hypothesis.
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Table 3: Ablation study on using conditional neural fields for static fields. Experiment on Lorentz
force field setting.

Method MSE (↓) No. parameters Inference Time

LoCS [24] 0.0238 130,307 0.0033
Aether 0.0129 132,822 0.0037
Conditional Aether 0.0131 142,807 0.0047

Choice of equivariant network Our method is agnostic to the choice of equivariant graph network;
we expect that it would be beneficial for a number of strictly equivariant networks. To test this
hypothesis, we combine our method with EGNN [41]. We start from the velocity formulation of
EGNN and modify the message and velocity equations to incorporate the predicted forces for each
node. We describe the model in detail in Appendix A.5. We train and evaluate this method on the
Lorentz force field setting, and report the results in Table 2c. EGNN combined with Aether reduces
the error by 30.9%, compared to a vanilla EGNN, which enhances our hypothesis. We further include
comparisons with more equivariant and non-equivariant graph networks in Appendix C.

Conditional neural fields for static settings Conditional neural fields generalize unconditional
neural fields, and could, in principle, be used to learn static fields. In that case, the neural field should
learn to ignore the latent vector, since the generated field should be identical regardless of the input
system; we expect its performance to match the unconditional field. This, however, can come at
the cost of increased training and inference time, as well as redundant computational resources and
model parameters. We verify this hypothesis with an ablation study on the Lorentz force field, where
we train and evaluate our method using a conditional field. In Table 3, we report the MSE, as well as
the training time per minibatch, the inference time, and the number of parameters for each model.
While the conditional model performs almost on par with the original unconditional model, this
comes at the cost of 27% higher inference time and 9,985 more parameters. We conclude that the
unconditional neural field is the preferred choice when there is expert knowledge that the field at
hand is a static field. In the absence of such knowledge, e.g. on an exploratory analysis for underlying
fields, then the conditional neural field would be preferable.

6 Conclusion

In this work, we introduced Aether, a method that discovers global fields in interacting systems.
We propose neural fields to discover latent force fields, and infer them from the dynamics alone.
Furthermore, we disentangle global fields from local object interactions, and combine neural fields
with equivariant graph networks to learn the systems. We show that our method can accurately
discover the underlying fields in a range of settings with static and dynamic fields, and effectively
use them to forecast future trajectories. To the best of our knowledge, Aether is the first work that
discovers fields in interacting systems, and the first that is able to model systems with equivariant
interactions and global fields. We hope that this work will inspire the community and bootstrap a line
of works that explores field discovery, since fields are omnipresent in all scientific tasks.

Limitations In this work, we have only considered fields that do not react to the observable
environment. While this setting is often true, in other scenarios, active fields might be crucial for
effective modelling of the system dynamics. Furthermore, in the dynamic field setting, we assume
that the input trajectories are descriptive enough to summarize the field we are trying to discover.
While this hypothesis often holds, it might not always be true. Future work can explore these very
interesting research directions.
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A Implementation details

A.1 Aether

Here we present the full Aether architecture. We first describe the details of the neural field used
for field discovery, and then we describe our graph network formulated as a variational autoencoder
[21, 37].

A.1.1 Neural field

In its general form, the neural field takes as inputs query states v that comprise positions p ∈ Rd,
orientations ω ∈ SO(d), and velocities u ∈ Rd, as well as a latent code z ∈ RDz used to condition the
field, and predicts latent forces at the query states. Thus, it is defined as f : Rd×SO(d)×Rd×RDz →
Rd, where d ∈ {2, 3}. Depending on the task at hand, we can omit the latent code z, e.g. if we are
modelling a static field, or the orientations ω, if we have prior knowledge that the field is independent
to them.

Encoding positions We encode the query positions using Gaussian random Fourier features [46],
γ(p) = [cos(2πBp), sin(2πBp)]

⊤
, where B ∈ R

Dc
2 ×d is a matrix with entries sampled from a

Gaussian distribution, Bkl ∼ N (0, σ2). Throughout the experiments, and unless otherwise specified,
we use a unit variance σ2 = 1, and Dc

2 = 256. Thus, the encoded positions have a dimension of 512.

Encoding orientations In 3 dimensions, for the orientations ω = (θ, ϕ, ψ)⊤, we follow [24],
and use the angles of the velocity vectors as a proxy. We represent each angle in ω as unit vector,
ω̂ = [cosω, sinω]

⊤, and encode them with a linear layer δ(ω̂) = Wωω̂, where Wω ∈ RDc×|ω̂|. In
2 dimensions, we use the same encoding, except that we now have a single angle ω = θ.

Encoding velocities For velocities, we simply encode them using a linear layer ζ(u) = Wuu,
where Wu ∈ RDc×d. Finally, we concatenate the encoded positions, orientations, and velocities in a
single vector before we feed them as input to the neural field.

Latent code The latent code z “summarizes” the input graph such that it isolates global field
effects. We employ a simple global spatio-temporal attention mechanism, similar to Li et al. [25],
that aggregates the input system in a latent vector representation. First, we define object embeddings
oi = GRU

(
Wgx

1:T
i

)
, where Wg ∈ RDo×d is a matrix used to linearly transform the inputs, and

GRU is the Gated Recurrent Unit [7]. We also define temporal embeddings t = PE(t), where PE
are positional encodings [49], defined as:

PE(t)2i = sin
(
t/100002i/Ds

)
, (11)

PE(t)2i+1 = cos
(
t/100002i/Ds

)
, (12)

where i is the i-th dimension.

The aggregation is then defined as follows:

z =
∑
i,t

softmax
(
fa
(
sti
))

· fb
(
sti
)
, with sti =

[
xt
i,oi

]
+ t, (13)

where fa : RDs → R, fb : RDs → RDz are 2-layer MLPs with SiLU activations [36] in-between.
They can be summarized as:

fa := {Linear(Ds, Dz) → SiLU → Linear(Dz, 1)}, (14)
fb := {Linear(Ds, Dz) → SiLU → Linear(Dz, Dz)}. (15)

In all experiments, we use Do = 512, Dz = 512, and Ds = Do + 2d = 516 in d = 2 dimensions, or
Ds = 518 in d = 3 dimensions.
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Neural field conditioning We condition the neural field using FiLM [33]. Following the imple-
mentation details of FiLM, in practice, we use the following equation for a FiLM layer:

h′ := FiLM(h, z) = (1 + α(z))⊙ h+ β(z), (16)

where h is the encoded input in the first FiLM layer, or the conditioned input in subsequent FiLM
layers, and α : RDz → RDh , β : RDz → RDh are MLPs. This equation deviates slightly from
Section 2, since it predicts the residual of a multiplicative modulation. This approach can be
beneficial during the early stages of training, since it initially defaults to an identity transformation
for zero-initialized weights, while the alternative can “zero out” the network outputs. For both α and
β we use 2-layer MLPs with SiLU activations in-between.

α := {Linear(Dz, Dh) → SiLU → Linear(Dh, Dh)} (17)
β := {Linear(Dz, Dh) → SiLU → Linear(Dh, Dh)}. (18)

Unless specified otherwise, in all experiments, we use Dh = 512.

Full neural field The full neural field is a 3-layer MLP with SiLU [36] activations in-between, and
FiLM layers after the first two linear layers, and outputs a latent force field. The neural field can be
summarized as:

f(v | z) = {Linear → FiLM → SiLU → Linear → FiLM → SiLU → Linear}. (19)

A.1.2 Aether as a variational autoencoder

Here we present our graph network architecture that closely follows Graber and Schwing [14], Kofinas
et al. [24]. The model is formulated as a variational autoencoder [21, 37] with latent edge types that
infers a latent graph structure. The encoder is tasked with predicting interactions between object
pairs, while the decoder uses the sampled graph structure to make predictions. As mentioned in
Section 3.3, our full architecture also integrates G-LoCS, i.e. the augmented node states include the
predicted forces exerted at the target node, as well as the state of the auxiliary origin-node, expressed
in the local frame of the target node.

Encoder Equations (20) to (22) describe the message passing steps of our graph network. In these
equations, we process each timestep independently.Then, in Equations (23) and (24) we compute
the evolution of edge embeddings over time with LSTMs [16], and in Equations (25) and (26) we
estimate the posterior and the learned prior over our edges.

h
(1),t
j,i = f (1)e

([
vt
j|i, f

t
j|i ,v

t
i|i, f

t
i|i ,v

t
O|i

])
(20)

h
(1),t
i = f (1)v

g(1)v

([
vt
i|i, f

t
i|i ,v

t
O|i

])
+

1

|N (i)|
∑

j∈N (i)

h
(1),t
j,i

 (21)

h
(2),t
j,i = f (2)e

([
h
(1),t
i ,h

(1),t
j,i ,h

(1),t
j

])
(22)

ht
(j,i),prior = LSTMprior

(
h
(2),t
j,i ,ht−1

(j,i),prior

)
(23)

ht
(j,i),enc = LSTMenc

(
h
(2),t
j,i ,ht+1

(j,i),enc

)
(24)

pϕ
(
zt|x1:t, z1:t−1

)
= softmax

(
fprior

(
ht
(j,i),prior

))
(25)

qϕ
(
zt
j,i|x

)
= softmax

(
fenc

([
ht
(j,i),prior,h

t
(j,i),enc

]))
(26)

The functions f (1)e , f
(1)
v , f

(2)
e , g

(1)
v , fprior, fenc denote MLPs.

Decoder The decoder samples zt
(j,i) using Gumbel-Softmax [27, 19]. The following equations

formalize a message passing scheme performed for the current timestep, and another one performed
for the hidden node states. Both are used to update the hidden node states, and to make predictions
for the next timestep. As mentioned in Section 2, we make predictions in the local coordinate frame
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of each node. Thus, we perform an inverse transformation for each node to transform the predictions
back to the global coordinate frame.

mt
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∑
k
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nt
i =

1

|N (i)|
∑

j∈N (i)

ht
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i = GRU
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t
]
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Our GRU [1] is identical to the one used in [23].

Training Our full VAE model is trained by minimizing the negative Evidence Lower Bound
(ELBO), which comprises the reconstruction loss of the predicted trajectories (positions and velocities)
and the KL divergence.

L(ϕ, θ) = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||pϕ(z|x)] (34)

Following Graber and Schwing [14], the reconstruction loss and the KL divergence take the following
form:

Eqϕ(z|x)[log pθ(x|z)] = −
∑
i

∑
t

||xt
i − µt

i||
2σ2

+
1

2
log

(
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, (35)
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H(qϕ(z
t
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∑
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qϕ(z
t
ji|x) log pϕ(zt

ji|x1:t, z1:t−1)

, (36)

where H denotes the entropy operator. In all experiments, we set the variance σ2 = 10−5.

We train Aether using Adam [21]. Unless stated otherwise, in all experiments, we use a learning rate
of 5e−4.

A.1.3 Aether architecture in Lorentz force field setting

The Lorentz force field setting, proposed by [10] uses only a single timestep as input and the task is
to predict the positions for a single timestep in the future. Thus, we have to modify our architecture
for this setting. This way, we also ensure a fairer comparison with other methods. We do not use an
NRI [22] or dNRI [14] backbone in this setting.
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with l ∈ {2, . . . , L}. We use 4 layers, i.e. L = 4. The functions f (l)e denote 2-layer MLPs with
SiLU [36] activations after each layer. The functions f (l)v denote 2-layer MLPs with SiLU activations
in-between, and doubling the dimensionality in-between. Finally, gv denotes a linear layer, while fo
denotes a 3-layer MLP with SiLU activations in-between. Following [10], we use a hidden dimension
of 64. For this experiment, we use a learning rate of 1e− 3.

f (l)v = {Linear → SiLU → Linear} (42)

f (l)e = {Linear → SiLU → Linear → SiLU} (43)
fo = {Linear → SiLU → Linear → SiLU → Linear} (44)

For the neural field, we use the input positions and velocities as input, as well as the particle charges,
i.e. f = f(p,u, q). We do not use any input encoding for positions or velocities in this setting, but
we use an embedding for the charges that maps them to 16 dimensions. We concatenate the charge
embeddings with positions and velocities and feed them as input to the neural field. The neural field
is a 3-layer MLP with SiLU activations in-between. We use a hidden dimension of 32 in the neural
field.

f = {Linear → SiLU → Linear → SiLU → Linear} (45)

A.2 G-LoCS
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A.3 Source oracle

The source oracle modifies LoCS [24] to use virtual nodes. Since graph networks are permutation
invariant, we cannot just include the sources as nodes of the graph and perform message passing,
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as the network would not be able to distinguish particles from sources. Thus, we treat the sources
separately in the message passing so that the network can identify them. More specifically, we
introduce a new message function that computes field source → particle messages. Furthermore,
we introduce a separate aggregation function in the update step that only aggregates the messages
from field sources. We denote the set of field sources as S. The state of a field source s ∈ S is
denoted as vs, while the same state expressed in the local coordinate frame of node i is denoted as
vs|i. The source oracle graph network is defined as follows:
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where fs is an MLP. We predict future states for all the “observable” particles, but not for the “source”
particles.

A.4 Parallel aether architecture
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A.5 Aether with EGNN backbone

Our method is agnostic to the choice of equivariant graph network; we expect that it would be
beneficial for a number of strictly equivariant networks. To test this hypothesis, we combine EGNN
[41] with our method; starting from the velocity formulation of EGNN, we modify the message and
velocity equations to incorporate the predicted forces for each node, as follows:

mj,i = ϕe

(
hl
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l
j ,
∥∥pl
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i

∥∥2
2
, aj,i, fi , fj

)
, (68)
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· ϕx(mj,i), (69)
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i + ul+1
i , (70)

mi =
∑

j∈N (i)

mji, (71)

hl+1
i = ϕh

(
hl
i,mi

)
. (72)

The remaining EGNN components remain unaltered.

A.6 Computing resources

All experiments were performed on single GPUs. We used 2 different GPU models, namely the
Nvidia RTX 2080 Ti, and Nvidia GTX 1080 Ti. Our source code was written in PyTorch [32], version
1.4.0, and CUDA 10.0.
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B Dataset details

B.1 Electrostatic field

Kipf et al. [23] introduced a dataset of interacting charged particles. Charged particles interact via
electrostatic Coulomb forces. We assume a set of N particles, and each particle has a position
pt
i ∈ RD and a charge qi ∈ R. The force f tj,i exerted from particle j to particle i is computed as

follows:

pt
j,i = pt

j − pt
i, (73)

p̂t
j,i =

pt
j,i∥∥pt
j,i

∥∥ , (74)

f tj,i = C · qiqj
p̂t
j,i∥∥pt
j,i

∥∥2 . (75)

Since forces only depend on positions at the current timestep, in the following equations, we omit the
time indices to reduce clutter. The total force exerted at particle i is:

fi =

N∑
j=1,j ̸=i

fj,i = C · qi
N∑

j=1,j ̸=i

qj
p̂j,i

∥pj,i∥2
. (76)

The electric field is a vector field, whose value at the test position pi assumes a positive test charge
qi = 1, and is defined as:

Ej,i =
fj,i
qi

= C · qj
p̂j,i

∥pj,i∥2
, (77)
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p̂j,i

∥pj,i∥2
. (78)

Our first experiment aims to study the effect of static fields, i.e. a single field across all train, validation,
and test simulations. We extend the charged particles dataset by adding a number of immovable
sources. Overall, these sources act like regular particles, exerting forces on the observable particles,
except we ignore any forces exerted to them, and fix their positions and velocities to zero. We use
N = 5 “observable” particles and M = 20 “source” particles. In all experiments, we assume unit
charges, qi = ±1, and C = 1. The probabilities of positive or negative charges are equal. Then, the
forces and the electric field can be simplified as:

fj,i = sign(qiqj)
p̂j,i

∥pj,i∥2
, (79)

Ei =

N∑
j=1,j ̸=i

sign(qj)
p̂j,i

∥pj,i∥2
. (80)

The net force exerted at a particle i ∈ {1, . . . , N} is computed as:

fi =

N+M∑
j=1,j ̸=i

fj,i =

N∑
j=1,j ̸=i

fj,i︸ ︷︷ ︸
particles

+

N+M∑
j=N+1

fj,i︸ ︷︷ ︸
field

. (81)

Following Satorras et al. [41], Fuchs et al. [12], Kofinas et al. [24], we remove virtual borders that
cause elastic collisions. We generate a dataset of 50,000 simulations for training, 10,000 for validation
and 10,000 for testing. The datasets contains only the positions and velocities for the “observable”
particles, while the field sources are only used for visualization. Following Kipf et al. [23], each
simulation lasts for 49 timesteps. During inference, we use the first 29 steps as input and predict the
remaining 20 steps.

19



Figure 7: Visualization of the static field in the electrostatic field setting

B.2 Traffic scenes - inD

InD [4] is a real-world traffic scenes dataset that comprises trajectories of pedestrians, vehicles,
and cyclists. It contains 33 recordings, recorded at 4 different locations in Aachen, Germany. We
hypothesize that discovering a latent traffic force field will be beneficial for trajectory forecasting in
traffic scenes. For simplicity, we focus on static field discovery in traffic scenes. We create a subset
that contains scenes from a single location. Namely, we choose “Frankenburg, Aachen”, since it is
the location with most interactions in the dataset. The subset corresponds to 12 recordings; we use 8
for training, 2 for validation, and 2 for testing. We follow a similar experimental setting with Graber
and Schwing [14], Kofinas et al. [24]. We divide each scene into 18-step sequences. We use the first
6 time steps as input and predict the next 12 time steps.

B.3 Gravitational n-body dataset

In this experiment, we study the influence of dynamic fields, i.e. fields that are different across
simulations. Similar to the electrostatic field setting, we extend the gravitational n-body dataset
by Brandstetter et al. [5] by adding gravitational sources. The equation that describes the forces is
similar to Equation (75). Namely, we have

f tj,i = C ·mimj

p̂t
j,i∥∥pt
j,i

∥∥2 , (82)

where mi,mj are the particle masses. We create a dataset of 50,000 simulations for training, 10,000
for validation and 10,000 for testing. We use N = 5 particles and M = 1 source. We set the masses
of particles to mp = 1, while the source has a mass of ms = 10. Similarly to the electrostatic field
experiment, the datasets contains only the positions and velocities for the “observable” particles,
while the field source is only used for visualization. We generate trajectories of 49 timesteps. We use
the first 44 timesteps as input and predict the remaining 5 steps. All other dataset details are identical
to Brandstetter et al. [5].

B.3.1 2D gravitational n-body dataset

We also experiment with a smaller variant of the dynamic gravitational fields, using a 2D setting. We
create a dataset of 5,000 simulations for training, 1,000 for validation and 1,000 for testing. All other
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dataset details are the same with the full 3D dataset. We report results in Figure 21. We showcase
predicted trajectories in Appendix D.3, and the learned fields in Appendix D.3.1.

C Extra experiments

C.1 Alternative equivariant network backbones

To further test the applicability of our method, we combine it with different equivariant graph network
backbones. First, we combine our method with GMN [18]. Similar to Equations (4) and (5), we
concatenate the predicted forces for each node with the message Zji in [Zji, fi, fj ]. The formulation
above is further motivated by SGNN [15], which extends GMN by including gravity as an external
force term, as well as object-aware information (see appendix A.3 in [15] for a comparison). In our
case, we replace the gravity term with the predicted forces per node. Thus, instead of [Zji,g], we
have [Zji, fi, fj ].

We train and evaluate GMN on the Lorentz force field setting. We then add the force terms using the
formulation above. We show the results in the table below. Indeed, using Aether greatly enhances the
performance of GMN, which further enhances our hypothesis.

Table 4: Ablation study on the choice of equivariant GNN backbone. Position prediction MSE on
Lorentz force field.

Method MSE (↓)

GMN [18] 0.0365
GMN+Aether (ours) 0.0261

Next, we integrate our method in EqMotion [55], a recent equivariant method with state-of-the-art
performance on trajectory forecasting. We incorporate Aether in EqMotion by treating the predicted
forces as geometric features similar to velocities. Namely, after computing the forces for each object
at each timestep, we compute the magnitudes of the force vectors and the force angle sequence, i.e.
the angles between forces in consecutive timesteps. We concatenate these quantities to the existing
features for the feature initialization step.

We train and evaluate EqMotion and Aether with EqMotion on inD [4] following our experimental
setup. We report the results in Figure 8. We see that Aether is beneficial even for a state-of-the-art
trajectory forecasting method, which further strengthens our claims.
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Figure 8: Ablation study on the choice of equivariant GNN backbone. Results on inD.

C.2 Non-equivariant network with neural field

Our ability to capture global components with a neural field stems from our overall architecture,
which promotes disentanglement. Using a graph network that respects the underlying symmetries
and has an inductive bias towards using local interactions, i.e. any equivariant graph network, allows
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the neural field to “solve for” the global components, by “subtracting” the local interactions from the
observable net effects.

The choice of an equivariant network is crucial here; a non-equivariant graph network like NRI [23]
or dNRI [14] would merely gather “redundant” information from the neural field. We demonstrate
this mathematically in the following equations for the static field, in which we first compute the force
f at a target position p, and then compute the node embedding using equations from NRI/dNRI,
including the forces.

f = f(p) = MLP1(p) (83)
h = g(p,u, f) = MLP2([p,u, f ]) (84)

We can see that the node embeddings depend on positions twice, one explicit and one through another
MLP, in an architecture similar to a concatenated residual connection. In this case, we do not expect
the neural field to isolate global forces, or to be helpful for future forecasting. We test this hypothesis
with an ablation experiment on the electrostatic field setting, by combing our neural field with dNRI,
instead of an equivariant network. In Table 5, we report the MSE at the final prediction timestep,
i.e. MSE@20. We can see that adding a neural field to a non-equivariant network does not enhance
performance, and in fact, it results in performance degradation, which enhances our hypothesis.

Table 5: Ablation study on the suitability of non-equivariant networks with Aether. Combining dNRI
–a non-equivariant graph network– with a neural field does not enhance performance. Results on the
electrostatic field setting.

Method MSE@20 (↓)

dNRI [14] 1.20
dNRI+Aether 1.37
Aether 0.69

C.3 Choice of conditioning mechanism

FiLM [33] is used in the dynamic field setting to condition neural fields. To examine its influence on
performance, we perform an ablation study on the 3D gravitational setting, where we replace FiLM
layers with conditioning by concatenation, a very simple and successful conditioning mechanism.
We term this model Concat Aether, and report the results in Table 6. We see that conditioning by
concatenation underperforms, scoring almost on par with LoCS. This is perhaps expected, since
concatenation is a rather weak form of conditioning, and our task is very challenging. On the other
hand, FiLM is a powerful mechanism and is able to condition effectively.

Table 6: Ablation study on the choice of conditioning mechanism. Results on the 3D gravitational
field setting.

Method MSE@5 (↓)

LoCS [24] 0.1308
Aether 0.0660
Concat Aether 0.1474
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D Qualitative results

D.1 Electrostatic field

Figure 9 shows qualitative results on the electrostatic field setting.

(a) Aether (b) G-LoCS (c) LoCS (d) dNRI

Figure 9: Predictions on the electrostatic field setting. Lighter colors indicate predictions, and darker
colors indicate the groundtruth. Predictions start where markers have black edges. Markers get bigger
and more opaque as trajectories evolve in time. The background streamplots indicate the groundtruth
field, and are not given as input to the networks. Similarly, the blue ⊕ markers and the red ⊖ markers,
are merely shown for illustrative purposes, indicating the charges of the field sources, and are not
given as input to the networks. Best viewed in color.

D.1.1 Discovered electrostatic field

In Figure 10 we visualize the discovered electrostatic field compared to the groundtruth one.

Figure 10: Learned Field (left) in electrostatic field setting compared to groundtruth (right).
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D.2 InD

Figure 11 shows qualitative results of our method on inD [4]. Figures 12, 13 and 14 show qualitative
results for G-LoCS, LoCS, and dNRI, respectively.

(a)

(b)

(c)

Figure 11: Aether predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.
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(a)

(b)

(c)

Figure 12: G-LoCS predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.
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(a)

(b)

(c)

Figure 13: LoCS predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.

26



(a)

(b)

(c)

Figure 14: dNRI predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.

D.2.1 Discovered traffic force field

In Figure 15 we visualize the discovered traffic force field on inD. In the supplementary material, we
provide video visualizations of the learned field, with input orientations evolving over time.
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Figure 15: Discovered field on inD [4]. For simplicity, we only visualize the field for discrete input
orientations in C4 =

{
0, π2 , π,

3π
2

}
. Best viewed in color.

D.3 2D gravity

Figure 16 shows qualitative results on the 2D gravitational n-body problem.

(a) Aether (b) G-LoCS (c) LoCS (d) dNRI

Figure 16: Predictions on gravity. Lighter colors indicate predictions, and darker colors indicate the
groundtruth. Predictions start where markers have black edges. Markers get bigger as trajectories
evolve. Best viewed in color.

D.3.1 Discovered 2D gravitational fields

Figure 17 shows examples of discovered fields compared to the groundtruth ones.
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Figure 17: Learned dynamic fields (left) in 2D gravitational field setting vs groundtruth (right).
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E Quantitative results

In all settings, we report the total errors, i.e. the mean squared errors of positions and velocities
over time, E(t) = 1

ND

∑N
n=1 ∥xt

n − x̂t
n∥22. Following Kofinas et al. [24], we also separately

report the L2 norm position errors, Ep(t) =
1
N

∑N
n=1∥pt

n − p̂t
n∥2, and velocity errors, Eu(t) =

1
N

∑N
n=1∥ut

n − ût
n∥2.
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Figure 18: Results in the electrostatic field setting.

E.2 InD
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Figure 19: Results in inD.

30



E.3 Gravity

1 2 3 4 5
Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L
2

E
rr

or
Position Errors

1 2 3 4 5
Step

0.0

0.1

0.2

0.3

L
2

E
rr

or

Velocity Errors

1 2 3 4 5
Step

0.00

0.05

0.10

0.15

M
SE

Total Errors

dNRI LoCS G-LoCS Aether

Figure 20: Results in the dynamic gravitational field setting.

E.4 2D gravity
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Figure 21: Results in the dynamic 2D gravitational field setting.

E.5 Significance of the discovered field
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Figure 22: Ablation study on the significance of the discovered field. Results in the electrostatic field
setting.
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