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TL;DR We discover global fields in interacting systems, inferring them Object interactions depend on local information, while underlying field We also propose G-LoCS, an approximately equivariant graph network Groundtruth  Aether (Ours) G-LoCS LoCS [7]
from the dynamics alone, using neural fields. effects depend on global states. Interactions are equivariant to a group of that integrates global information and still operates in local coordinate B N D B
Abstract Systems of interacting objects often evolve under the influence of un- transformations; field effects are not. frame;. We augment the g.raph with an au><|||ary node—pbject corre-
. . . . - - - — - - — - sponding to the global coordinate frame, i.e. an object positioned at the
derlying field effects that govern their dynamics, yet previous works have abstracted e - e o o o e e - . d oriented t tch th , 0
away from such effects, and assume that systems evolve in a vacuum. In this work, we B - - - - - origin, and oriented to match the x-axis, x» = |pp, up| ~ [0, X|.
focus on discovering these fields, and infer them from the observed dynamics alone, 5.: E B . = fﬁeld+fpdm<iﬂ ]
without directly observing them. We theorize the presence of latent force fields, and B . - S T T T Experlments
ropose neural fields to learn them. Since the observed dynamics constitute the net B ST T : : : :
Prop =S | ' . | SRR Static field settings Dynamic field settings
effect of local object interactions and global field effects, recently popularized equiv- 'Q B - - - . oD o ol . 30 tonal field Q T . 1 Dj d field
ariant networks are inapplicable, as they fail to capture global information. To address s s . iectrosiahc ]: qia gravitational hields ualitative results - Discovere eLldas
this, we propose to disentangle local object interactions -~which are SE(3) equivariant We only observe the net effect of the two constituents. We refer to this orentz oree e 4 | | |
: : L = Traffic scenes, inD [1] Predicted Field Groundtruth Field
and depend on relative states- from external global field effects ~which depend on as entangled equivariance. ’
absolute states. We model the interactions with equivariant graph networks, and com- . "= ANRI  —— LoCS  —#— G-LoCS  —e— Acther (Ours)
bine them with neural fields in a novel graph network that integrates field forces. Our Background - Neural fields primer Total Ervors Total Brrors Total Errors

experiments show that we can accurately discover the underlying fields in charged
particles settings, traffic scenes, and gravitational n-body problems, and effectively
use them to learn the system and forecast future trajectories.
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Table 1. MSE on Lorentz force field. {: Results taken from ClofNet [4].
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