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TL;DR: Field discovery in interacting systems

TL;DRWe discover global fields in interacting systems, inferring them

from the dynamics alone, using neural fields.

Abstract Systems of interacting objects often evolve under the influence of un-

derlying field effects that govern their dynamics, yet previous works have abstracted

away from such effects, and assume that systems evolve in a vacuum. In this work, we

focus on discovering these fields, and infer them from the observed dynamics alone,

without directly observing them. We theorize the presence of latent force fields, and

propose neural fields to learn them. Since the observed dynamics constitute the net

effect of local object interactions and global field effects, recently popularized equiv-

ariant networks are inapplicable, as they fail to capture global information. To address

this, we propose to disentangle local object interactions –which are SE(3) equivariant

and depend on relative states– from external global field effects –which depend on

absolute states. Wemodel the interactionswith equivariant graph networks, and com-

bine them with neural fields in a novel graph network that integrates field forces. Our

experiments show that we can accurately discover the underlying fields in charged

particles settings, traffic scenes, and gravitational n-body problems, and effectively

use them to learn the system and forecast future trajectories.

We term our method Aether, inspired by the postulated medium that

permeates all throughout space and allows for propagation of light.

Keywords Graph Neural Networks, Neural Fields, Field Discovery,

Equivariance, Interacting Dynamical Systems, Geometric Graphs

Introduction – Interacting systems are everywhere…

Colliding particles

N-body systems

Molecules

Traffic scenes Figure credit: [2] Figure credit: [8]

…but they do not evolve in a vacuum

Electromagnetic fields

Gravitational fields

“Social” fields

Road network

Traffic rules

Figure credit: [10]
Figure credit: [3]

Related work – Equivariant graph networks

Strictly equivariant graph networks exhibit increased robustness and per-

formance, while maintaining parameter efficiency due to weight sharing.

E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras 1 Emiel Hoogeboom 1 Max Welling 1

Abstract
This paper introduces a new model to learn graph
neural networks equivariant to rotations, transla-
tions, reflections and permutations called E(n)-
Equivariant Graph Neural Networks (EGNNs). In
contrast with existing methods, our work does not
require computationally expensive higher-order
representations in intermediate layers while it
still achieves competitive or better performance.
In addition, whereas existing methods are lim-
ited to equivariance on 3 dimensional spaces,
our model is easily scaled to higher-dimensional
spaces. We demonstrate the effectiveness of our
method on dynamical systems modelling, repre-
sentation learning in graph autoencoders and pre-
dicting molecular properties.

1. Introduction
Although deep learning has largely replaced hand-crafted
features, many advances are critically dependent on induc-
tive biases in deep neural networks. An effective method to
restrict neural networks to relevant functions is to exploit
the symmetry of problems by enforcing equivariance with
respect to transformations from a certain symmetry group.
Notable examples are translation equivariance in Convo-
lutional Neural Networks and permutation equivariance in
Graph Neural Networks (Bruna et al., 2013; Defferrard et al.,
2016; Kipf & Welling, 2016a).

Many problems exhibit 3D translation and rotation symme-
tries. Some examples are point clouds (Uy et al., 2019), 3D
molecular structures (Ramakrishnan et al., 2014) or N-body
particle simulations (Kipf et al., 2018). The group corre-
sponding to these symmetries is named the Euclidean group:
SE(3) or when reflections are included E(3). It is often de-
sired that predictions on these tasks are either equivariant or
invariant with respect to E(3) transformations.
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Figure 1. Example of rotation equivariance on a graph with a graph
neural network φ

Recently, various forms and methods to achieve E(3) or
SE(3) equivariance have been proposed (Thomas et al.,
2018; Fuchs et al., 2020; Finzi et al., 2020; Köhler et al.,
2020). Many of these works achieve innovations in study-
ing types of higher-order representations for intermediate
network layers. However, the transformations for these
higher-order representations require coefficients or approx-
imations that can be expensive to compute. Additionally,
in practice for many types of data the inputs and outputs
are restricted to scalar values (for instance temperature or
energy, referred to as type-0 in literature) and 3d vectors
(for instance velocity or momentum, referred to as type-1 in
literature).

In this work we present a new architecture that is translation,
rotation and reflection equivariant (E(n)), and permutation
equivariant with respect to an input set of points. Our model
is simpler than previous methods in that it does not require
the spherical harmonics as in (Thomas et al., 2018; Fuchs
et al., 2020) while it can still achieve competitive or bet-
ter results. In addition, equivariance in our model is not
limited to the 3-dimensional space and can be scaled to
larger dimensional spaces without a significant increase in
computation.
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(a) EGNN [9] (b) LoCS [7]
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In this paper, we propose non-linear E(3) equivariant message passing layers using the same principles
that underlie steerable group convolutions, and view them as non-linear group convolutions. Central
to our method is the use of steerable vectors and their equivariant transformations to represent and
process node features; we present the underlying mathematics of both in Sec. 2 and illustrate it
in Fig. 1 on a molecular graph. As a consequence, information at nodes and edges can now be
rotationally invariant (scalar) or covariant (vector, tensor). In steerable message passing frameworks,
the Clebsch-Gordan (CG) tensor product is used to steer the update and message functions by
geometric information such as relative orientation (pose). Through a notion of steerable node
attributes we provide a new class of equivariant activation functions for general use with steerable
feature fields (Weiler et al., 2018; Thomas et al., 2018). Node attributes can include information such
as node velocity, force, or atomic spin. Currently, especially in molecular modelling, most datasets
are build up merely of atomic number and position information. In this paper, we demonstrate the
potential of enriching node attributes with more geometric and physical quantities. We demonstrate
the effectiveness of SEGNNs by setting a new state of the art on n-body toy datasets, in which our
method leverages the abundance of geometric and physical quantities available. We further test our
model on the molecular datasets QM9 and OC20. Although here only (relative) positional information
is available as geometric quantity, SEGNNs achieve state of the art on the IS2RE dataset of OC20,
and competitive performance on QM9. For all experiments we provide extensive ablation studies.

The main contributions of this paper are: (i) A generalisation of equivariant GNNs such that node and
edge attributes are not restricted to scalars. (ii) A new class of equivariant activation functions for
steerable vector fields, based on the introduction of steerable node attributes and steerable multi-layer
perceptrons, which permit the injection of geometric and physical quantities into node updates. (iii)
A unifying view on various equivariant GNNs through the definition of non-linear convolutions.
(iv) Extensive experimental ablation studies that shows the benefit of steerable over non-steerable
(invariant) message passing, and the benefit of non-linear over linear convolutions.

Figure 1: Commutation diagram for an equivariant operator φ applied to a 3D molecular graph with
steerable node features (visualised as spherical functions); As the molecule rotates, so do the node
features. The use of steerable vectors allows neural networks to exploit, embed, or learn geometric
cues such as force and velocity vectors.

2 GENERALISED E(3) EQUIVARIANT STEERABLE MESSAGE PASSING

Message passing networks. Consider a graph G = (V, E), with nodes vi ∈ V and edges eij ∈ E ,
with feature vectors fi ∈ Rcn attached to each node, and edge attributes aij ∈ Rce attached to each
edge. Graph neural networks (GNNs) (Scarselli et al., 2009; Kipf & Welling, 2017; Defferrard et al.,
2016; Battaglia et al., 2018) are designed to learn from graph-structured data and are by construction
permutation equivariant with respect to the input. A specific type of GNNs are message passing
networks (Gilmer et al., 2017), where a layer updates node features via the following steps:

compute message mij from node vj to vi: mij = φm (fi, fj ,aij) , (1)

aggregate messages and update node features vi: f ′i = φf

fi,
∑

j∈N (i)

mij

 , (2)

whereN (i) represents the set of neighbours of node vi, and φm and φf are commonly parameterised
by multilayer perceptrons (MLPs).

2

(c) SEGNN [2]

However, they are incompatible with global field effects.

Motivation – Entangled equivariance

Object interactions depend on local information, while underlying field

effects depend on global states. Interactions are equivariant to a group of

transformations; field effects are not.

We only observe the net effect of the two constituents. We refer to this

as entangled equivariance.

Background – Neural fields primer
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Background – Equivariant graph network backbone
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LoCS [7]

xi =
{

pi, positions
ui, velocities

}
→ vi =

 pi positions
ui, velocities
ωi, orientations


vj|i = Global2Local(vj, vi)

∆xi|i = GNN
(

vi|i,
{

vj|i
}

j∈N (i)

)
∆xi = Local2Global

(
∆xi|i

)
x̂i = xi + ∆xi

Method – Aether Architecture

We model object interactions with equivariant graph networks [7], and

field effects with neural fields. We hypothesize that field effects can

be attributed to force fields, and therefore, our neural fields learn to

discover latent force fields.
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(a) Latent Neural Field

Input trajectories

Query states

Latent

Neural Field

Predicted field

Equivariant Graph

Neural Network

Predicted trajectories

Groundtruth trajectories

Loss

(b) Aether pipeline

The pipeline of our method, Aether. In the latent neural field (a), a graph aggregation

module summarizes the input trajectories in a latent variable z. Query states from
input trajectories, alongside z, are fed to a neural field that predicts a latent force
field. In (b), a graph network integrates predicted forces with input trajectories to

predict future trajectories. The graph aggregation module and the FiLM layers exist

only in a dynamic field setting.

h(1)
j,i = f (1)

e

([
vj|i, fj|i , vi|i, fi|i

])
h(1)

i = f (1)
v

gv

([
vi|i, fi|i

])
+ 1

|N (i)|
∑

j∈N (i)

h(1)
j,i


h(l)

j,i = f (l)
e

([
h(l−1)

i , h(l−1)
j,i , h(l−1)

j

])
h(l)

i = f (l)
v

h(l−1)
i + 1

|N (i)|
∑

j∈N (i)

h(l)
j,i


x̂i = xi + Ri · fo

(
hL

i

)

Method – Approximate equivariance

We also propose G-LoCS, an approximately equivariant graph network

that integrates global information and still operates in local coordinate

frames. We augment the graph with an auxiliary node-object corre-

sponding to the global coordinate frame, i.e. an object positioned at the

origin, and oriented to match the x-axis, xO = [pO, uO] ' [0, x̂].

Experiments

Static field settings

2D electrostatic field

3D Lorentz force field [4]

Traffic scenes, inD [1]

Dynamic field settings

3D gravitational fields

dNRI LoCS G-LoCS Aether (Ours)
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Table 1. MSE on Lorentz force field. †: Results taken from ClofNet [4].

Method MSE (↓) No. parameters

GNN † 0.0908 104,387

SE(3) Transformer † [5] 0.1438 1,763,134

EGNN † [9] 0.0368 134,020

ClofNet † [4] 0.0251 160,964

LoCS [7] 0.0238 130,307

Aether (ours) 0.0129 132,822

Experiments – Ablation studies

Table 2. (a) Ablation study on the importance of the learned field. Our discovered field

is almost as helpful as the groundtruth for at least 10 timesteps. (b) Ablation study on

the importance of a sequential architecture. A parallel architecture is not as effective as

the sequential approach. (c) Ablation study on the choice of equivariant GNN

backbone. Our method is agnostic to the choice of equivariant GNN backbone; it is

beneficial for a number of strictly equivariant networks. (d) Ablation study on using

conditional neural fields for static fields. Conditional neural fields can be used in static

settings, at the expense of more parameters and higher inference time.

(a) Electrostatic field

Method MSE@10 (↓)

Particle Oracle 0.1847

Force Oracle 0.1883

Aether 0.2015

(b) Lorentz force field

Method MSE (↓)

LoCS [7] 0.0238

Aether 0.0129

Parallel Aether 0.0211

(c) Lorentz force field

Method MSE (↓)

EGNN [9] 0.0368

EGNN+Aether 0.0254

(d) Lorentz force field

Method MSE (↓) No. parameters Inference Time

LoCS [7] 0.0238 130,307 0.0033

Aether 0.0129 132,822 0.0037

Conditional Aether 0.0131 142,807 0.0047

Qualitative results – Electrostatic field

Aether (Ours) G-LoCS LoCS [7] dNRI [6]

Qualitative results – Traffic scenes

Groundtruth Aether (Ours) G-LoCS LoCS [7] dNRI [6]

Qualitative results – Discovered fields

Aether can effectively discover the underlying electrostatic field.

Discovered field on inD [1]. For clarity, we only visualize the field for dis-

crete input orientations in C4 =
{

0, π
2 , π, 3π

2

}
.
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