
Roto-translated Local Coordinate Frames
For Interacting Dynamical Systems

Miltiadis Kofinas1, Naveen Shankar Nagaraja2, Efstratios Gavves1

1VIS Lab 2Department of Autonomous Driving
University of Amsterdam BMW Group
Amsterdam, Netherlands Munich, Germany

Amsterdam Applied ML Meetup, 6 April 2022

Interacting systems are everywhere

• Colliding particles
• N-body systems
• Molecules
• Motion capture
• Traffic scenes

3D Charged particles [6]

Traffic scene [8]

[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[8] Tim Salzmann† , Boris Ivanovic† , et al. “Trajectron++: Dynamically-Feasible Trajectory Forecasting With

Heterogeneous Data”. In: ECCV. 2020 2

Future forecasting

Past Future

3

Geometric graphs

v3

v1

v2

Geometric graph

G = (V, E ,X)

V = {vi}Ni=1, E ⊆ V × V

X =

{(
pi, position
ui, velocity

)}N

i=1

4

Related work - Neural Relational Inference [6]

Neural Relational Inference for Interacting Systems

x xt Δxt

…
Σ

…

Encoder

Σ

Decoder

…

q φ(z|x)

…

v →e

Legend: : Node emb. : Edge emb. : Concrete distribution: MLP : Sampling

e →v v →e v →e e →v

Figure 3. The NRI model consists of two jointly trained parts: An encoder that predicts a probability distribution qφ(z|x) over the latent
interactions given input trajectories; and a decoder that generates trajectory predictions conditioned on both the latent code of the encoder
and the previous time step of the trajectory. The encoder takes the form of a GNN with multiple rounds of node-to-edge (v→e) and
edge-to-node (e→v) message passing, whereas the decoder runs multiple GNNs in parallel, one for each edge type supplied by the latent
code of the encoder qφ(z|x).

The encoder qφ(z|x) returns a factorized distribution of
zij , where zij is a discrete categorical variable representing
the edge type between object vi and vj . We use a one-hot
representation of the K interaction types for zij .

The decoder

pθ(x|z) =
∏T
t=1 pθ(x

t+1|xt, ...,x1, z) (4)

models pθ(xt+1|xt, ...,x1, z) with a GNN given the latent
graph structure z.

The prior pθ(z) =
∏
i 6=j pθ(zij) is a factorized uniform dis-

tribution over edges types. If one edge type is “hard coded”
to represent “non-edge” (no messages being passed along
this edge type), we can use an alternative prior with higher
probability on the “non-edge” label. This will encourage
sparser graphs.

There are some notable differences between our model and
the original formulation of the VAE (Kingma & Welling,
2014). First, in order to avoid the common issue in VAEs of
the decoder ignoring the latent code z (Chen et al., 2017),
we train the decoder to predict multiple time steps and not a
single step as the VAE formulation requires. This is neces-
sary since interactions often only have a small effect in the
time scale of a single time step. Second, the latent distribu-
tion is discrete, so we use a continuous relaxation in order
to use the reparameterization trick. Lastly, we note that we
do not learn the probability p(x1) (i.e. for t = 1) as we are
interested in the dynamics and interactions, and this does
not have any effect on either (but would be easy to include
if there was a need).

The overall model is schematically depicted in Figure 3. In
the following, we describe the encoder and decoder compo-
nents of the model in detail.

3.1. Encoder

At a high level, the goal of the encoder is to infer pair-
wise interaction types zij given observed trajectories x =
(x1, ...,xT). Since we do not know the underlying graph,
we can use a GNN on the fully-connected graph to predict
the latent graph structure.

More formally, we model the encoder as qφ(zij |x) =
softmax(fenc,φ(x)ij,1:K), where fenc,φ(x) is a GNN act-
ing on the fully-connected graph (without self-loops). Given
input trajectories x1, ...,xK our encoder computes the fol-
lowing message passing operations:

h1
j = femb(xj) (5)

v→e : h1
(i,j) = f1e ([h1

i ,h
1
j]) (6)

e→v : h2
j = f1v (

∑
i 6=j h

1
(i,j)) (7)

v→e : h2
(i,j) = f2e ([h2

i ,h
2
j]) (8)

Finally, we model the edge type posterior as qφ(zij |x) =
softmax(h2

(i,j)) where φ summarizes the parameters of the
neural networks in Eqs. (5)–(8). The use of multiple passes,
two in the model presented here, allows the model to “dis-
entangle” multiple interactions while still using only binary
terms. In a single pass, Eqs. (5)–(6), the embedding h1

(i,j)

only depends on xi and xj ignoring interactions with other
nodes, while h2

j uses information from the whole graph.

The functions f(...) are neural networks that map between
the respective representations. In our experiments we used
either fully-connected networks (MLPs) or 1D convolu-
tional networks (CNNs) with attentive pooling similar to
(Lin et al., 2017) for the f(...) functions. See supplementary
material for further details.

While this model falls into the general framework presented
in Sec. 3, there is a conceptual difference in how hl(i,j)

• Explicitly infer graph structure over latent edge types
• Simultaneously learn the dynamical system

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018

5

Related work - Dynamic Neural Relational Inference [4]

�

enc

�

prior

GNN
LSTM

prior

LSTM

enc

�

enc

�

prior

GNN

GNN

�

enc

�

prior

GNN

GNN

�

dec

GNN

Encoder & Prior Decoder

�

�+1

(

| ,

)

�

�

�

�−1

�

1:�−1

�

1:�−2

(

|�

)

�

�

�

�−1

(

| ,

)

�

�

�

�+1

�

1:�

�

1:�

�

�

�

�−1

�

̂

�+2

�

̂

�+1

�

̂

�

(

| ,

)

�

�

�

�+2

�

1:�+1

�

1:�+1

(

| ,

)

�

�

�

�

�

1:�−1

�

1:�−1

�

dec

�

dec

� ̃

�+1

�

̃

�

� ̃

�−1

LSTM

prior

LSTM

prior

LSTM

enc

LSTM

enc

(

| ,

)

�

�

�

�

�

1:�

�

1:�−1

(

|�

)

�

�

�

�

(

| ,

)

�

�

�

�+1

�

1:�+1

�

1:�

(

|�

)

�

�

�

�+1

Figure 3: The three model components of dNRI. The inputs are fed through a fully-connected GNN to produce an embedding

for every pair of entities at every time step. These are aggregated using a forward LSTM to encode the past history of entity

relations and a backwards LSTM to encode the future history of entity relations. The prior is computed as a function of only

the past history, while the approximate posterior is computed as a function of both the past and future. A set of edge variables

are sampled from the approximate posterior, and these are used to select edge models for the decoder GNN. The decoder

evolves a hidden state using this GNN and the previous predictions and predicts the state of the entities at the next time step.

chitecture to produce an embedding per edge per time step:

ht
i,1 = femb

(

xt
i

)

(8)

v → e : ht
(i,j),1 = f1

e

([

ht
i,1,h

t
j,1

])

(9)

e → v : ht
j,2 = f1

v

∑

i 6=j

ht
(i,j),1

 (10)

v → e : ht
(i,j),emb = f2

e

([

ht
i,2,h

t
j,2

])

(11)

This architecture implements a form of neural message

passing in a graph, where vertices v represent entities i and

edges e represent relations between entity pairs (i, j). Ev-

ery model f is a multilayer perceptron (MLP), and each h

represents intermediate hidden states over the entities or re-

lations during computation. The output of this computation

is the embedding ht
(i,j),emb

, which captures the state of the

relations between entities i and j at time t.
Each of these embeddings is fed into an LSTM [16]. In-

tuitively, this LSTM models the evolution of the relations

between entities across time. Finally, another MLP trans-

forms the hidden state at each time step into the logits of

the prior distribution. These final two steps are formally

specified as follows:

ht
(i,j),prior = LSTMprior

(

ht
(i,j),emb,h

t−1
(i,j),prior

)

,

(12)

pφ(z
t|x1:t, z1:t−1) = softmax

(

fprior

(

ht
(i,j),prior

))

. (13)

Fig. 3 provides an illustration of the prior model. Note

that, in lieu of passing the previous relation predictions to

the prior as input, we encode the dependence of the prior

on the relations for previous time steps in the hidden state

h(i,j),prior .

3.4. Encoder

The role of the encoder is to approximate the distribu-

tion of relations at each time step as a function of the en-

tire input, as opposed to just the past input history. As de-

scribed by Krishnan et al. [23] and Fraccaro et al. [10], the

true posterior distribution over the latent variables pθ(z|x)
is a function of the future states of the observed variables

x. Thus, a key component of our encoder is an LSTM that

processes the states of the variables in reverse. We re-use

the relation embedding ht
(i,j),emb

described previously and

pass these representations through a backward LSTM. The

final approximate posterior is then obtained by concatenat-

ing this reverse state and the forward state provided by the

prior and passing the result into a MLP. The encoder is also

illustrated in Fig. 3, and is formally described via:

ht
(i,j),enc=LSTMenc

(

ht
(i,j),emb,h

t+1
(i,j),enc

)

, (14)

qφ

(

zt(i,j)|x
)

=softmax
(

fenc

([

ht
(i,j),enc,h

t
(i,j),prior

]))

. (15)

Note that the encoder and prior models share parameters, so

we use φ to refer to the parameters of both of these models.

Since the model components of dNRI have changed from

static NRI, the training and inference procedures also re-

quire modifications. These will be discussed next.

3.5. Training/Inference

To train the parameters φ and θ of the encoder/prior and

decoder, we proceed as follows: the input trajectories x are

passed through the GNN model to produce relation embed-

dings ht
(i,j),emb

for every time t and every entity pair (i, j).
These representations are input into the forward/backward

LSTMs, and the prior pφ(z|x) and approximate posterior

qφ(z|x) are computed. We then sample from the approxi-

mate posterior to get predicted relations z̃. Given these, we

8516

• Dynamic relations through time
• Sequential approximate posterior based on past states

[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

6

Related work - E(n) Equivariant Graph Networks [9]

E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras 1 Emiel Hoogeboom 1 Max Welling 1

Abstract
This paper introduces a new model to learn graph
neural networks equivariant to rotations, transla-
tions, reflections and permutations called E(n)-
Equivariant Graph Neural Networks (EGNNs). In
contrast with existing methods, our work does not
require computationally expensive higher-order
representations in intermediate layers while it
still achieves competitive or better performance.
In addition, whereas existing methods are lim-
ited to equivariance on 3 dimensional spaces,
our model is easily scaled to higher-dimensional
spaces. We demonstrate the effectiveness of our
method on dynamical systems modelling, repre-
sentation learning in graph autoencoders and pre-
dicting molecular properties.

1. Introduction
Although deep learning has largely replaced hand-crafted
features, many advances are critically dependent on induc-
tive biases in deep neural networks. An effective method to
restrict neural networks to relevant functions is to exploit
the symmetry of problems by enforcing equivariance with
respect to transformations from a certain symmetry group.
Notable examples are translation equivariance in Convo-
lutional Neural Networks and permutation equivariance in
Graph Neural Networks (Bruna et al., 2013; Defferrard et al.,
2016; Kipf & Welling, 2016a).

Many problems exhibit 3D translation and rotation symme-
tries. Some examples are point clouds (Uy et al., 2019), 3D
molecular structures (Ramakrishnan et al., 2014) or N-body
particle simulations (Kipf et al., 2018). The group corre-
sponding to these symmetries is named the Euclidean group:
SE(3) or when reflections are included E(3). It is often de-
sired that predictions on these tasks are either equivariant or
invariant with respect to E(3) transformations.

1UvA-Bosch Delta Lab, University of Amsterdam,
Netherlands. Correspondence to: Victor Garcia Sator-
ras <v.garciasatorras@uva.nl>, Emiel Hoogeboom
<e.hoogeboom@uva.nl>, Max Welling <m.welling@uva.nl>.

Preliminary work. Under review.

Figure 1. Example of rotation equivariance on a graph with a graph
neural network φ

Recently, various forms and methods to achieve E(3) or
SE(3) equivariance have been proposed (Thomas et al.,
2018; Fuchs et al., 2020; Finzi et al., 2020; Köhler et al.,
2020). Many of these works achieve innovations in study-
ing types of higher-order representations for intermediate
network layers. However, the transformations for these
higher-order representations require coefficients or approx-
imations that can be expensive to compute. Additionally,
in practice for many types of data the inputs and outputs
are restricted to scalar values (for instance temperature or
energy, referred to as type-0 in literature) and 3d vectors
(for instance velocity or momentum, referred to as type-1 in
literature).

In this work we present a new architecture that is translation,
rotation and reflection equivariant (E(n)), and permutation
equivariant with respect to an input set of points. Our model
is simpler than previous methods in that it does not require
the spherical harmonics as in (Thomas et al., 2018; Fuchs
et al., 2020) while it can still achieve competitive or bet-
ter results. In addition, equivariance in our model is not
limited to the 3-dimensional space and can be scaled to
larger dimensional spaces without a significant increase in
computation.

ar
X

iv
:2

10
2.

09
84

4v
1

 [
cs

.L
G

]
 1

9
Fe

b
20

21

• Leverage rotation equivariant relative positions and
invariant euclidean distances

[9] Vı́ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant Graph Neural Networks”. In: ICML.
2021

7

Related work - E(n) Equivariant Graph Networks [9]E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras 1 Emiel Hoogeboom 1 Max Welling 1

Abstract
This paper introduces a new model to learn graph
neural networks equivariant to rotations, transla-
tions, reflections and permutations called E(n)-
Equivariant Graph Neural Networks (EGNNs). In
contrast with existing methods, our work does not
require computationally expensive higher-order
representations in intermediate layers while it
still achieves competitive or better performance.
In addition, whereas existing methods are lim-
ited to equivariance on 3 dimensional spaces,
our model is easily scaled to higher-dimensional
spaces. We demonstrate the effectiveness of our
method on dynamical systems modelling, repre-
sentation learning in graph autoencoders and pre-
dicting molecular properties.

1. Introduction
Although deep learning has largely replaced hand-crafted
features, many advances are critically dependent on induc-
tive biases in deep neural networks. An effective method to
restrict neural networks to relevant functions is to exploit
the symmetry of problems by enforcing equivariance with
respect to transformations from a certain symmetry group.
Notable examples are translation equivariance in Convo-
lutional Neural Networks and permutation equivariance in
Graph Neural Networks (Bruna et al., 2013; Defferrard et al.,
2016; Kipf & Welling, 2016a).

Many problems exhibit 3D translation and rotation symme-
tries. Some examples are point clouds (Uy et al., 2019), 3D
molecular structures (Ramakrishnan et al., 2014) or N-body
particle simulations (Kipf et al., 2018). The group corre-
sponding to these symmetries is named the Euclidean group:
SE(3) or when reflections are included E(3). It is often de-
sired that predictions on these tasks are either equivariant or
invariant with respect to E(3) transformations.

1UvA-Bosch Delta Lab, University of Amsterdam,
Netherlands. Correspondence to: Victor Garcia Sator-
ras <v.garciasatorras@uva.nl>, Emiel Hoogeboom
<e.hoogeboom@uva.nl>, Max Welling <m.welling@uva.nl>.

Preliminary work. Under review.

Figure 1. Example of rotation equivariance on a graph with a graph
neural network φ

Recently, various forms and methods to achieve E(3) or
SE(3) equivariance have been proposed (Thomas et al.,
2018; Fuchs et al., 2020; Finzi et al., 2020; Köhler et al.,
2020). Many of these works achieve innovations in study-
ing types of higher-order representations for intermediate
network layers. However, the transformations for these
higher-order representations require coefficients or approx-
imations that can be expensive to compute. Additionally,
in practice for many types of data the inputs and outputs
are restricted to scalar values (for instance temperature or
energy, referred to as type-0 in literature) and 3d vectors
(for instance velocity or momentum, referred to as type-1 in
literature).

In this work we present a new architecture that is translation,
rotation and reflection equivariant (E(n)), and permutation
equivariant with respect to an input set of points. Our model
is simpler than previous methods in that it does not require
the spherical harmonics as in (Thomas et al., 2018; Fuchs
et al., 2020) while it can still achieve competitive or bet-
ter results. In addition, equivariance in our model is not
limited to the 3-dimensional space and can be scaled to
larger dimensional spaces without a significant increase in
computation.

ar
X

iv
:2

10
2.

09
84

4v
1

 [
cs

.L
G

]
 1

9
Fe

b
20

21

mj,i = φe

(
hl
i,h

l
j ,
∥∥∥pl

j − pl
i

∥∥∥2
2

)

pl+1
i = pl

i +
1

|N (i)|
∑

j∈N (i)

(
pl
j − pl

i

)
· φx(mj,i)

mi =
∑

j∈N (i)

mj,i

hl+1
i = φh

(
hl
i,mi

)
• Leverage rotation equivariant relative positions and
invariant euclidean distances

[9] Vı́ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant Graph Neural Networks”. In: ICML.
2021

8

Motivation

What happens when we rotate/translate the inputs?
Past Future

9

Motivation

Past Future

Rotate &

Translate

9

Motivation

Past Future

Rotate &

Translate

Roto-translation equivariance
Dynamics do not change under rotations and translations

9

Motivation

Ego-centric perspective
Objects operate in ego-centric and asymmetric views of the
world

Global coordinate frames
Graphs embedded in arbitrary global coordinate frames

10

Motivation

Ego-centric perspective
Objects operate in ego-centric and asymmetric views of the
world

Global coordinate frames
Graphs embedded in arbitrary global coordinate frames

11

Local coordinate frames (LoCS)

x

y

12

Local coordinate frames (LoCS)

x

y

13

Local coordinate frames (LoCS)

x

y

14

Local coordinate frames (LoCS)

15

Local coordinate frames (LoCS)

16

Local coordinate frames (LoCS)

17

Local coordinate frames (LoCS)

Node states

xt
j =

{
pt
j , position

ut
j , velocity

}
vt
j =

pt
j , position

ut
j , velocity

ωt
j , orientation

Relative positions rtj,i = pt
j − pt

i

Rotation matrix Qt
i = Q

(
ωt
i

)
Local state vt

j|i =

 Qt>
i · rtj,i

Qt>
i · ωt

j

Qt>
i · ut

j

18

Graph Networks in local coordinate frames

Node states
xt
j =

(
pt
j ,u

t
j

)
vt
j =

(
pt
j ,u

t
j ,ω

t
j

)

xt
x

y

x

y

x

y

x

y

x

y

Global→Local GNN

yt

Invariant GNN

vt
j|i = Global2Local

(
vt
j ,v

t
i

)
yt
i|i = GNN

(
vt
i|i,
{
vt
j|i

}
j∈N (i)

)

19

Graph Networks in local coordinate frames

Node states
xt
j =

(
pt
j ,u

t
j

)
vt
j =

(
pt
j ,u

t
j ,ω

t
j

)

xt
x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

xt+1

Equivariant GNN

vt
j|i = Global2Local

(
vt
j ,v

t
i

)
∆xt+1

i|i = GNN
(
vt
i|i,
{
vt
j|i

}
j∈N (i)

)
∆xt+1

i = Local2Global
(
∆xt+1

i|i

)
xt+1
i = xt

i +∆xt+1
i

20

Local coordinate frames as Neural relational inference models

Encoder
Edge Prediction→ Invariant Task

Decoder
Trajectory Forecasting→ Equivariant Task

21

Local coordinate frames as Neural relational inference models

xt−1

x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt

x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1

x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local

GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)

xt−1
x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)

xt+1
x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder

Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt

x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder

Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local

GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder

Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder

Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

Local coordinate frames as Neural relational inference models

xt−1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt−1|x1:t−1, z1:t−2

)
xt−1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t

xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

LSTM

pθ
(
zt|x1:t, z1:t−1

)
xt x

y

x

y

x

y

x

y

x

y

Global→Local GNN

x

y

x

y

x

y

x

y

x

y

Local→Global

x̂t+1

xt+1
x

y

x

y

x

y

x

y

x

y

LSTM

pθ
(
zt+1|x1:t+1, z1:t

)
xt+1

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x̂t+2

Encoder Decoder

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: ICLR. 2014
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

22

LoCS - Graph network formulation

Graph Neural Network

hj,i = fe
([
vj|i,vi|i

])
hi = fv

gv
(
vi|i
)
+

1

|N (i)|
∑

j∈N (i)

hj,i

23

Anisotropic continuous filtering in local coordinate frames

Directionality in graphs =⇒ Anisotropic filtering

MLP
Relative positions

Orientations
. . .

x

y

x

y

24

Experiments

Synthetic [1]

• 2D, repulsive forces

InD [1]

• Traffic scenes, 2D, social interactions

Charged particles [6]

• 3D, electrostatic forces

CMU Motion capture [3]

• 3D, subject #35, walking trajectories

25

Results

LoCS (Ours) dNRI NRI EGNN GRU

1 6 11 16 21 25
Step

0.000

0.005

0.010

0.015

0.020

M
SE

Total Errors

(a) Synthetic [4]

1 10 19 28 37 45
Step

0

20

40

60

M
SE

Total Errors

(b) Traffic scenes, inD [1]

1 5 9 13 17 20
Step

0.0

0.2

0.4

0.6

M
SE

Total Errors

(c) Charged particles [6]

1 9 17 25 33 41 48
Step

0.0

0.2

0.4

0.6

0.8

M
SE

Total Errors

(d) Motion Capture [3]

[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020
[1] Julian Bock et al. “The inD dataset: A drone dataset of naturalistic road user trajectories at german

intersections”. In: 2020 IEEE Intelligent Vehicles Symposium (IV). 2020
[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[3] CMU. Carnegie-Mellon Motion Capture Database. 2003. url: http://mocap.cs.cmu.edu

26

http://mocap.cs.cmu.edu

Results - Synthetic Dataset

then predict the trajectory distribution pθ(x|z̃). Unlike in

the static NRI case, we always provide ground-truth states

to the decoder as input during training, as we observed that

providing ground-truth for a fixed number of steps and then

using predictions as input for the rest of the trajectory per-

formed worse for dNRI. Finally, we calculate the ELBO:

the reconstruction error is computed following Eq. (4), and

the KL divergence is computed as

T
∑

t=1

H
(

qφ
(

ztij |x
))

−
∑

z
t
ij

qφ
(

ztij |x
)

log pφ
(

ztij |x
1:t, z1:t−1

)

 .

(16)

At test time, we are tasked with predicting future states

of the system. This means that we cannot utilize the en-

coder to predict edges, as we do not have the proper infor-

mation about the future. Therefore, given previous predic-

tions x1:t, we compute the prior distribution over relations

pφ
(

z1:t|x1:t, z1:t−1
)

. We sample from the prior to obtain

relation predictions z̃t, and use this as well as our previ-

ous predictions to estimate the next state of the variables

pθ
(

xt+1|x1:t, z̃1:t
)

. This process continues until the entire

trajectory is predicted.

4. Experiments

To show dNRI’s strengths compared to static NRI, we

provide experimental results on synthetic particle, human

motion capture, basketball player, and traffic trajectory

datasets. To show the operation of our models, we addition-

ally visualize sample trajectories and predicted relations.

Unless otherwise specified, we compare the following

models and architectures: for the dNRI encoder/prior GNN,

femb, f1
e , f1

v , and f2
e are all two-layer MLPs with 256 hid-

den/output units and ELU activations. The LSTM models

used by the prior and the encoder use 64 hidden units. Both

fprior and fenc are 3-layer MLPs with 128 hidden units and

ReLU activations. The static NRI encoder consists of the

exact same GNN architecture with the exception that the

input into femb consists of the entire input trajectory. In

this case, the encoder logits are produced by passing hemb

through a 3-layer MLP with 256 hidden units and a number

of output units equal to the number of relation types being

modeled. This is equivalent to the MLP encoder described

by Kipf et al. [21], except we add an additional MLP to the

output of the GNN. We use the recurrent decoder described

by Kipf et al. [21] in Eqs. 13-17 and in C.5 for both static

and dynamic NRI. Addditionally, every model hard-codes

the first edge type to represent no interaction.

For evaluation purposes, models are provided with n ini-

tial time steps of input and are tasked with predicting some

number of future steps. When evaluating the static model,

we use two different inference procedures: the first, labeled

as ‘Static NRI’, uses the provided initial n time steps of in-

0 10 20
Step

0.000

0.001

0.002

0.003

0.004

0.005

M
SE

Static NRI
dNRI

Figure 4: Synthetic data trajectory prediction errors and re-

lation prediction visualization.

put to predict relation types; these relations are then used

for decoding the entire end of the trajectory. The second

inference procedure, labeled as ‘Static NRI, “Dynamic” In-

ference’, re-evaluates the relation predictions using the most

recent n trajectory predictions.

In addition to the NRI-based models, we study additional

simple baselines: SingleLSTM predicts the trajectory for

each independently using an LSTM with shared parame-

ters. JointLSTM predicts the trajectories for all of the en-

tities jointly using an LSTM, i.e., both the inputs and out-

puts are the concatenated states of all entities. FCGraph

uses the same decoder architecture as dNRI, but assumes

a fully-connected graph with one edge type at every time

step. Additional experimental details and prediction visual-

izations can be found in the Appendix. Code used to imple-

ment these models and run these experiments can be found

at https://github.com/cgraber/cvpr_dNRI.

4.1. Synthetic Physics Simulations

The purpose of these experiments is to evaluate the abil-

ity of dNRI to recover ground-truth dynamic relations. For

this we consider a synthetic dataset constructed to contain

dynamic relations. Each trajectory consists of three par-

ticles: the first two (red) move with a constant velocity in

some direction. The third (blue) is initialized with a random

velocity, but is additionally “pushed” away by the other par-

ticles whenever the distance separating them is less than 1.

Our findings are summarized in Fig. 4. Static NRI, with

average relation prediction F1 of 27.1, is unable to model

the dynamic relations, and performs worse than dNRI,

which has average relation prediction F1 of 54.3.

4.2. Motion Capture Data

Next we study motion capture recordings from several

subjects taken from the CMU motion capture database [8].

We run experiments on two subjects: the first, #35, is the

same subject evaluated by Kipf et al. [21] and consists of

walking trajectories. The second, #118, consists of trials

where the subject stands stationary for a differing amount

of time and then jumps forward. For the former subject, we

follow Kipf et al. [21]: train using sequences of length 50

8517

Relation prediction F1 score on synthetic
dataset

Method NRI dNRI LoCS

F1 26.5 60.8 88.9

[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020

27

Qualitative results - charged particles

Groundtruth

LoCS (Ours) dNRI [4]

NRI [6] EGNN [9]

[6] Thomas Kipf† , Ethan Fetaya† , et al. “Neural relational inference for interacting systems”. In: ICML. 2018
[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020
[9] Vı́ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant Graph Neural Networks”. In: ICML.

2021
28

Qualitative results - inD

Groundtruth LoCS (Ours)

dNRI [4] EGNN [9]

[4] Colin Graber and Alexander G Schwing. “Dynamic Neural Relational Inference”. In: CVPR. 2020
[9] Vı́ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant Graph Neural Networks”. In: ICML.

2021
29

Conclusion

• Local coordinate frames for all objects
• Invariance/equivariance to global roto-translations
• Anisotropic continuous filters in local coordinate frames
• Demonstrate effectiveness on a range of 2D/3D settings

• Source code: https://github.com/mkofinas/locs
• Paper: https://arxiv.org/abs/2110.14961

30

https://github.com/mkofinas/locs
https://arxiv.org/abs/2110.14961

References i

[1] Julian Bock et al. “The inD dataset: A drone dataset of nat-
uralistic road user trajectories at german intersections”. In:
2020 IEEE Intelligent Vehicles Symposium (IV). 2020.

[2] Kyunghyun Cho et al. “Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Trans-
lation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2014.

[3] CMU. Carnegie-MellonMotion Capture Database. 2003. url:
http://mocap.cs.cmu.edu.

[4] Colin Graber and Alexander G Schwing. “Dynamic Neural
Relational Inference”. In: CVPR. 2020.

31

http://mocap.cs.cmu.edu

References ii

[5] Diederik P Kingma and Max Welling. “Auto-encoding vari-
ational bayes”. In: ICLR. 2014.

[6] Thomas Kipf†, Ethan Fetaya†, Kuan-ChiehWang, MaxWelling,
and Richard Zemel. “Neural relational inference for inter-
acting systems”. In: ICML. 2018.

[7] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. “Stochastic backpropagation and approximate infer-
ence in deep generative models”. In: ICML. 2014.

[8] Tim Salzmann†, Boris Ivanovic†, Punarjay Chakravarty, and
Marco Pavone. “Trajectron++: Dynamically-Feasible Trajec-
tory Forecasting With Heterogeneous Data”. In: ECCV. 2020.

32

References iii

[9] Vı́ctor Garcia Satorras, Emiel Hoogeboom, andMaxWelling.
“E(n) Equivariant Graph Neural Networks”. In: ICML. 2021.

[10] Martin Simonovsky and Nikos Komodakis. “Dynamic edge-
conditioned filters in convolutional neural networks on
graphs”. In: CVPR. 2017.

33

	Introduction
	Related work
	Method - LoCS
	Experiments
	Conclusion
	References

