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Introduction - Networks for networks

Introduction – Neuron symmetries

Neurons in an MLP can be reordered while maintaining exactly the same function [4]. Re‐
ordering neurons here means changing the preceding and following weights attached to the
neuron accordingly.
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Weight symmetries in a 2‐layer MLP subnetwork.

Related works
Overlook the inherent permutation symmetry
Rely on intricate weight‐sharing patterns to achieve equivariance
Ignore the network architecture itself, limited to a single architecture

Neural networks are the new data!

More than 600, 000 models on April 2024!

Source: https://huggingface.co/models

Networks for networks, a paradigm shift?

Traditional Paradigm Modern Paradigm
Save signal as an array Fit signal with an INR and save its parameters
Process with CNNs/ViTs Process with parameter space networks

Train NNs with hyperparameter search Model zoos & NNs are the new data!
Generative parameter space networks on the weights
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Neural networks as neural graphs
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Neural network as neural graph:

Node i feature: V
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Neural graphs accommodate heterogeneous architectures:
✓ Architectures with varying computational graphs
✓ Different numbers of layers
✓ Different number of hidden dimensions
✓ Different non‐linearities
✓ Residual connections

Node & edge features

CNNs as neural graphs
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Graph networks for neural networks

We adapt existing GNNs and transformers for neural graphs.

NG‐GNN: We extend PNA [2] with an MLP that updates the edge features given the inci‐
dent nodes’ features and the previous layer’s edge features.

NG‐T:We extend Relational Transformer [3] with multiplicative interactions between node
and edge features to algorithmically align it with the forward‐pass of a neural network.

Positional embeddings

We impose order in the input & output nodes by adding positional embeddings. Hidden
neurons in each layer are orderless, so they share the same positional embedding.
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Probe features

Learn a set of sample inputs that we pass through the input neural network and monitor
the intermediate activations and the output. We include these features as additional node
features.

Heterogeneous architectures

Non‐linearities: Learned embeddings as added node features
Residual connections: Additional edges with weight 1
Normalization layers: Linear layers with diagonal weights
Self‐attention: 3‐dimensional edge features (Q, K, V )

Experiments

INR classification & style editing

Tasks:
Classify datasets of INRs fitted individually on images.
Enlarge images (INRs) through dilation.

MNIST INR classification Fashion MNIST INR classification MNIST INR dilation

Ablation study. Importance of positional embeddings on MNIST INR classification.

Method Accuracy in %

NG‐GNN (Ours) 91.4±0.6

NG‐GNN w/o positional embeddings 83.9±0.3

NG‐T (Ours) 92.4±0.3

NG‐T w/o positional embeddings 77.9±0.7

Predicting CNN generalization

Tasks: Predict the generalization performance of CNN classifiers based on their parame‐
ters.

New dataset: We introduce CNN Wild Park, a dataset of heterogeneous CNNs that vary
in the number of layers, kernel sizes, activation functions, and residual connections.

We measure performance using Kendall’s τ . Higher is better.

Method CIFAR10‐GS [9] CIFAR10 Wild Park

NFNHNP [10] 0.934±0.001 —
StatNN [9] 0.915±0.002 0.719±0.010

NG‐GNN (Ours) 0.930±0.001 0.804±0.009

NG‐T (Ours) 0.935±0.000 0.817±0.007

Ablation study. Importance of non‐linearity embeddings on predicting CNN generaliza‐
tion on CNN Wild Park.

Method Kendall’s τ (↑)

StatNN [9] 0.719±0.010

NG‐GNN (Ours) 0.804±0.009

NG‐GNN w/o activation embedding 0.778±0.018

NG‐T (Ours) 0.817±0.007

NG‐T w/o activation embedding 0.728±0.010

Scan me!

Learning to optimize

An exciting new application for neural graphs!

Task: Train a neural network (optimizer) that can optimize the weights of other neural
networks (optimizee).

Figure credit: [1]

We train optimizers on Fashion MNIST, evaluate on Fashion MNIST & CIFAR10. We
report the test image classification accuracy (%) after 1,000 steps.

Optimizer FashionMNIST (validation task) CIFAR‐10 (test task)

Adam [5] 80.97±0.66 54.76±2.82

FF [7] 85.08±0.14 57.55±1.06

LSTM [6] 85.69±0.23 59.10±0.66

NFN [10] 83.78±0.58 57.95±0.64

NG‐GNN (Ours) 85.91±0.37 64.37±0.34

NG‐T (Ours) 86.52±0.19 60.79±0.51
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Training (left) and testing (right) curves on CIFAR‐10 for the baseline optimizers (Adam, FF, LSTM, NFN)
and the optimizers trained with our NG‐GNN and NG‐T.
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