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ABSTRACT

Neural networks that process the parameters of other neural networks find applica-
tions in domains as diverse as classifying implicit neural representations, generating
neural network weights, and predicting generalization errors. However, existing ap-
proaches either overlook the inherent permutation symmetry in the neural network
or rely on intricate weight-sharing patterns to achieve equivariance, while ignoring
the impact of the network architecture itself. In this work, we propose to represent
neural networks as computational graphs of parameters, which allows us to har-
ness powerful graph neural networks and transformers that preserve permutation
symmetry. Consequently, our approach enables a single model to learn from neural
graphs with diverse architectures. We showcase the effectiveness of our method
on a wide range of tasks, including classification and editing of implicit neural
representations, predicting generalization performance, and learning to optimize,
while consistently outperforming state-of-the-art methods. The source code is
open-sourced at https://github.com/mkofinas/neural-graphs.

1 INTRODUCTION

How can we design neural networks that themselves take neural network parameters as input? This
would allow us to make inferences about neural networks, such as predicting their generalization
error (Unterthiner et al., 2020), generating neural network weights (Schürholt et al., 2022a), and
classifying or generating implicit neural representations (Dupont et al., 2022) without having to
evaluate them on many different inputs. For simplicity, let us consider a deep neural network with
multiple hidden layers. As a naı̈ve approach, we can simply concatenate all flattened weights and
biases into one large feature vector, from which we can then make predictions as usual. However,
this overlooks an important structure in the parameters: neurons in a layer can be reordered while
maintaining exactly the same function (Hecht-Nielsen, 1990). Reordering neurons of a neural network
means permuting the preceding and following weight matrices accordingly. Ignoring the permutation
symmetry will typically cause this model to make different predictions for different orderings of the
neurons in the input neural network, even though they represent exactly the same function.

In general, accounting for symmetries in the input data improves the learning efficiency and underpins
the field of geometric deep learning (Bronstein et al., 2021). Recent studies (Navon et al., 2023;
Zhou et al., 2023a) confirm the effectiveness of equivariant layers for parameter spaces (the space of
neural network parameters) with specially designed weight-sharing patterns. These weight-sharing
patterns, however, require manual adaptation to each new architectural design. Importantly, a single
model can only process neural network parameters for a single fixed architecture. Motivated by
these observations, we take an alternative approach to address the permutation symmetry in neural
networks: we present the neural graph representation that connects neural network parameters similar
to the computation graph (see Figure 1). By explicitly integrating the graph structure in our neural
network, a single model can process heterogeneous architectures, i.e. architectures with varying
computational graphs, including architectures with different number of layers, number of hidden
dimensions, non-linearities, and different network connectivities such as residual connections.
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Figure 1: Representing a neural network
and its weights as a neural graph. We as-
sign neural network parameters to graph
features by treating biases bi as corre-
sponding node features Vi, and weights
Wij as edge features Eij connecting the
nodes in adjacent layers.

We make the following contributions. First, we propose a simple and efficient representation of
neural networks as neural graphs, which ensures invariance to neuron symmetries. The perspective
of permuting neurons rather than parameters makes our model conceptually much simpler than prior
work. We detail various choices on how the neural graph can encode a neural network, including the
novel concept of “probe features” that represent the neuron activations of a forward pass. Second, we
adapt existing graph neural networks and transformers to take neural graphs as input, and incorporate
inductive biases from neural graphs. In the context of geometric deep learning, neural graphs
constitute a new benchmark for graph neural networks. Finally, we empirically validate our proposed
method on a wide range of tasks, and outperform state-of-the-art approaches by a large margin.

2 NEURAL NETWORKS AS NEURAL GRAPHS

Two aspects determine a neural network’s behavior: the parameters, and the architecture that defines
how the parameters are used. Prior work has only modeled one of these, namely the parameters,
while assuming a fixed architecture. This limits the existing models to a single input architecture; any
changes (regardless of whether they affect the parameters or not, such as through skip-connections)
cannot be accounted for. These changes can also alter the network’s symmetry group, which requires
a complete redesign for every new architecture. Our approach therefore considers both the parameters
as well as the architecture that specifies the computational instructions of the neural network.

Our method is straightforward: we represent the input neural network as a graph, with its nodes
corresponding to individual neurons in the neural network and its edges corresponding to connections
between neurons. The weights of the input neural network determine the edge features and the biases
determine the node features. We refer to this as the neural graph. Importantly, the natural symmetries
in these graphs correspond exactly to the neuron permutation symmetries in neural networks: when
we permute the nodes of the neural graph, the adjacency matrix is permuted in a way such that the
connections between the same neurons remain the same. Therefore, different neuron permutations
of the input neural network – which correspond to the same function – result in the same graph as
well, which is precisely what we desire1. Another benefit of the neural graph representation is that
there is an extensive body of prior research on graph neural networks that we can make use of to
obtain powerful models. Graph neural networks and transformers naturally exhibit equivariance to
the permutation symmetries of graphs, and therefore our neural graphs that represent neural networks.

In the following section, we explain how we convert Multi-Layer Perceptrons (MLPs) into neural
graphs. Afterwards, we show how to extend the conversion to Convolutional Neural Networks
(CNNs). Finally, we show how our method can process heterogeneous architectures.

2.1 MLPS AS GRAPHS

We first outline the procedure for constructing a neural graph G = (V ,E) with node features
V ∈ Rn×dV and edge features E ∈ Rn×n×dE . Here, n denotes the total number of nodes in the
graph, and dV , dE denote the number of node and edge features, respectively. Consider an MLP with
L fully connected layers. The weight matrices for this MLP are

{
W(1), . . . ,W(L)

}
, and the biases

are
{
b(1), . . . ,b(L)

}
. Each weight matrix W(l) has dimensions dl × dl−1 and each bias b(l) has

dimensions dl. The total number of nodes is then given by n =
∑L

l=0 dl, where d0 is the dimension
of the input. We define the edge and node feature matrices containing the weights and biases as

1Neurons in the input and output layers are typically an exception to this, as they are not freely exchangeable
without changing the underlying function. Section 3 addresses this through positional embeddings.
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where W(l)⊤ denotes the transposed weight matrix. The edge features form a sparse block matrix
where the sparsity pattern depends on the number of nodes per layer: the first diagonal block has
size d0, the second d1, and so on. We can verify that putting W(l) as the first off-diagonal blocks
means that they have the expected size of dl × dl−1. The first d0 node features in V are set to 0 to
reflect the fact that there are no biases at the input nodes. We can show that our neural graph has a
one-to-one correspondence to the neural network’s computation graph. This ensures that distinct
MLPs get mapped to distinct neural graphs.

Similar to the example above, many applications of neural networks in parameter space only include
the neural network parameters as input. For such applications, an MLP has scalar weights W(l)

ij ∈ R
and biases b

(l)
i ∈ R comprising the elements of E,V , resulting in one-dimensional features, i.e.

dV = dE = 1. Depending on the task at hand, however, we have the flexibility to incorporate
additional edge and node features. We explore some examples of this in Section 2.4.

2.2 CNNS AS GRAPHS

So far, we have only described how to encode basic MLPs as graphs. We now address how to gener-
alize the graph representation to alternative network architectures, namely convolutional networks.
To make the exposition of our method clear, we will use the following interpretation of convolutional
layers and CNNs. Convolutional layers take as input a multi-channel input image (e.g. an RGB image
has C = 3 channels) or a multi-channel feature map, and process it with a filter bank, i.e. a collection
of convolutional kernels – often termed filters. Each filter results in a single-channel feature map;
applying all filters in the filter bank results in a collection of feature maps, which we concatenate
together in a multi-channel feature map. CNNs, in their simplest form, are a stack of convolutional
layers mixed with non-linearities in between.

Permutation symmetries in a CNN work similarly to an MLP; permuting the filters in a layer while
simultaneously permuting the channels of each filter in the subsequent layer effectively cancels
out the permutations, shown visually in Figure 5 in Appendix C.2. Under the aforementioned
interpretation, single-channel slices of a multi-channel feature map (or single-channel slices of the
input) correspond to nodes in our neural graph. Each node is connected via edges incoming from a
particular convolutional kernel from the filter bank. By treating each channel as a node, our CNN
neural graph respects the permutation symmetries of the CNN.

We now describe the neural graph representation for each component in a CNN (with more
details in Appendix C.2). As a working example, let us consider a CNN with L convolu-
tional layers. It consists of filters

{
W(l)

}
and biases

{
b(l)

}
for layers l ∈ {1, . . . , L}, where

W(l) ∈ Rdl×dl−1×wl×hl ,b(l) ∈ Rdl , and wl, hl denote the width and the height of kernels at layer l.

Convolutional layers. Convolutional layers are the core operation in a convolutional network.
Since channels in a CNN correspond to nodes in the neural graph, we can treat the biases the same
way as in an MLP, namely as node features – see Equation (1). The kernels, however, cannot be
treated identically due to their spatial dimensions, which do not exist for MLP weights. To resolve
this, we represent the kernels by flattening their spatial dimensions to a vector. To ensure spatial
self-consistency across kernels of different sizes, we first zero-pad all kernels to a maximum size
s = (wmax, hmax), and then flatten them. This operation allows for a unified representation across
different kernel sizes; we can process all kernels with the same network. The maximum kernel size is
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chosen as a hyperparameter per experiment; this operation is visualized in Figure 6 in Appendix C.2.
After this operation, the kernels can be treated as a multi-dimensional equivalent of linear layer
weights. We construct the edge features matrix similarly to Equation (1); the only difference is that
this matrix no longer has scalar features. Instead, we have E ∈ Rn×n×dE , with dE = wmax · hmax.

Flattening layer. CNNs are often tasked with predicting a single feature vector per image. In such
cases, the feature maps have to be converted to a single feature vector. Modern CNN architectures (He
et al., 2016) perform adaptive pooling after the last convolutional layer, which pools the whole feature
map in a single feature vector, while traditional CNNs (Simonyan & Zisserman, 2015) achieved that
by flattening the spatial dimensions of the feature maps. The downside of the latter approach is that
CNNs are bound to a specific input resolution and cannot process arbitrary images. Our neural graph
is not bound to any spatial resolution, and as such, its construction does not require any modifications
to integrate adaptive pooling. While the CNNs in all our experiments employ adaptive pooling, we
also propose two mechanisms to address traditional flattening, which we discuss in Appendix C.2.

Linear layers. Linear layers are often applied after flattening or adaptive pooling to produce the
final feature vector representation for an image. The most straightforward way to treat linear layers
in a CNN is in the exact same fashion as in an MLP. The downside of this approach is that linear
layers and convolutional layers have separate representations, as their dE will typically differ. An
alternative is to treat linear layers as 1× 1 convolutions, which allows for a unified representation
between linear and convolutional layers. When treated as convolutions, the linear layers are padded
to the maximum kernel size and flattened. In our experiments, we explore both options, and choose
the most suitable via hyperparameter search.

2.3 MODELLING HETEROGENEOUS ARCHITECTURES

One of the primary benefits of the neural graph representation is that it becomes straightforward to
represent varying network architectures that can all be processed by the same graph neural network.
Notably, we do not require any changes to accommodate a varying number of layers, number of
dimensions per layer, or even completely different architectures and connectivities between layers.
When dealing with a single architecture, we can opt to ignore certain architectural components that
are shared across instances, as our method – and related methods – can learn to account for them
during training. These include activation functions and residual connections. Thus, we will now
describe how we can incorporate varying non-linearities and residual connections in heterogeneous
architectures of CNNs or MLPs.

Non-linearities. Non-linearities are functions applied elementwise to each neuron, and can thus be
encoded as node features. We create embeddings for a list of common activation functions and add
them to the node features.

Residual connections. Residual connections are an integral component of modern CNN architec-
tures. A residual connection directly connects the input of a layer to its output as y = f(x) + x.
Incorporating residual connections in our neural graph architecture is straightforward, since we can
include edges from each sender node in x to the respective receiving node in y. Since residual
connections can be rewritten as y = f(x) + Ix, where I is the identity matrix, the edge features have
a value of 1 for each neuron connected.

Transformers. The feedforward component of transformers (Vaswani et al., 2017) can be treated
as an MLP and its neural graph follows a similar schema as previously outlined. We explain the
conversion rules for normalization layers in Appendix C.3 and the conversion rules for multi-head
self-attention in Appendix C.4. After individually converting the parts, we can compose them into a
neural graph for transformers.

2.4 NODE AND EDGE REPRESENTATION

Our neural graph representation gives us the flexibility to choose what kinds of data serve as node
and edge features. Though we mainly focus on weights and biases, there are also other options that
we can use, for example we use the gradients in a learning to optimize setting.

Edge direction. Our basic encoding only considers the forward pass computations of the neural
network, yielding a directed acyclic graph. To facilitate information flow from later layers back
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to earlier layers we can add reversed edges to the neural graph. Specifically, we include E⊤ as
additional edge features. Similarly, we can also include E + E⊤ as extra features representing
undirected features.

Probe features. Humans tend to interpret complicated functions by probing the function with a few
input samples and inspecting the resulting output. We give the graph neural network a similar ability
by adding extra features to every node that correspond to specific inputs. In particular, we learn a set
of sample input values that we pass through the input neural network and retain the values for all
the intermediate activations and the output. For example, consider the simple input neural network
f(x) = W(2)α

(
W(1)x+ b(1)

)
+ b(2) for which we acquire an extra node feature:

Vprobe =
(
x, α

(
W(1)x+ b(1)

)
, f(x)

)⊤
, (2)

per x ∈ {xm}m=1,...,M where {xm}m=1,...,M is a set of learned input values. For simplicity, we
use the same set for all neural graphs. The features in Equation 2 are then included as additional node
features. Notably, probe features are invariant to all augmentations on the input neural network’s
parameters as long as it maintains the exact same function for the output and hidden layers.

Normalization. Existing works on parameter space networks (Navon et al., 2023; Zhou et al., 2023a)
perform feature normalization by computing the mean and standard deviation separately for each
neuron in the training set. This operation, however, violates the neuron symmetries; since neurons
can be permuted, it becomes essentially arbitrary to normalize neurons across neural networks. We
propose a simple alternative that respects permutation equivariance: we compute a single mean and
standard deviation for each layer (separately for weights and biases), and use them to standardize our
neural graph, i.e. Ŵ(l) =

(
W(l) − µ

(l)
W

)
/σ

(l)
W , b̂(l) =

(
b(l) − µ

(l)
b

)
/σ

(l)
b , l ∈ {1, . . . , L} .

Positional embeddings. Before processing the neural graph, we augment each node with learned
positional embeddings. To maintain the permutation symmetry in the hidden layers, nodes corre-
sponding to the same intermediate layer share the same positional embedding. Although this layer
information is implicitly available in the adjacency matrix, using positional embeddings allows
immediate identification, eliminating the need for multiple local message-passing steps. However, we
distinguish between the symmetries of input and output nodes and those of hidden nodes. In a neural
network, rearranging the input or output nodes generally alters the network’s underlying function. In
contrast, the graph representation is indifferent to the order of input and output nodes. To address
this discrepancy, we introduce unique positional embeddings for each input and output node, thereby
breaking the symmetry between and enabling GNNs and transformers to differentiate between them.

3 LEARNING WITH NEURAL GRAPHS

Graph neural networks (GNNs) and transformers are equivariant with respect to the permutation
symmetries of graphs. We present one variant of each and adapt them for processing neural graphs.

GNN. Graph neural networks (Scarselli et al., 2008; Kipf & Welling, 2017) in the form of message
passing neural networks (Gilmer et al., 2017) apply the same local message passing function at
every node. While various GNN variants exist, only few of them are designed to accommodate
edge features, and even fewer update these edge features in hidden layers. Updating edge features
is important in our setting since our primary features reside on the edges; when per-weight outputs
are required, they become imperative. We choose PNA (Corso et al., 2020) as our backbone, a
state-of-the-art graph network that incorporates edge features. However, PNA does not update its
edge features. To address this gap, we apply a common extension to it by updating the edge features
at each layer using a lightweight neural network ϕe:

e
(k+1)
ij = ϕ(k+1)

e

([
v
(k)
i , e

(k)
ij ,v

(k)
j

])
, (3)

where k is the layer index in our network. This ensures that the edge features are updated per layer
based on incident node features and produce a representation that depends on the graph structure.

Navon et al. (2023) suggest that the ability to approximate the forward pass of the input neural network
can be indicative of expressive power. Part of the forward pass consists of the same operation for each
edge: multiply the weight with the incoming activation. Motivated by the insights on algorithmic
alignment by Xu et al. (2020), we adapt the message-passing step to include this multiplicative
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interaction between the node and edge features. In particular, we apply FiLM to the message passing
step (Perez et al., 2018; Brockschmidt, 2020):

mij = ϕscale(eij)⊙ ϕm([vi,vj ]) + ϕshift(eij). (4)

Note that this differs from the FiLM-GNN (Brockschmidt, 2020) in that we compute the scaling
factors based on the edge features and not based on the adjacent node’s features.

Transformer. The transformer encoder (Vaswani et al., 2017) can be seen as a graph neural network
that operates on the fully connected graph. Similar to GNNs, the original transformer encoder and
common variants do not accommodate edge features. We use the transformer variant with relational
attention (Diao & Loynd, 2023) that adds edge features to the self-attention computation. The
relational transformer is already equipped with updates to the edge features. As per GNNs, we further
augment the transformer with modulation to enable multiplicative interactions between the node and
edge features. In particular, we change the update to the value matrix in the self-attention module:

vij =
(
Wvalue

scaleeij
)
⊙

(
Wvalue

n vj

)
+Wvalue

shifteij . (5)

4 EXPERIMENTS

We assess the effectiveness of our approach on a diverse set of tasks requiring neural network
processing, with either per-parameter outputs (equivariant) or a global output (invariant). We refer to
the graph network variant of our method as NG-GNN (Neural Graph Graph Neural Network), and
the transformer variant as NG-T (Neural Graph Transformer). We refer to the appendix for more
details. The code for the experiments is open-sourced2 to facilitate reproduction of the results.

4.1 INR CLASSIFICATION AND STYLE EDITING

First, we evaluate our method on implicit neural representation (INR) classification and style editing,
comparing against DWSNet (Navon et al., 2023) and NFN (Zhou et al., 2023a). These tasks involve
exclusively the same MLP architecture per dataset.

Setup. For the INR classification task, we use two datasets. The first dataset contains a single INR
(Sitzmann et al., 2020) for each image from the MNIST dataset (LeCun et al., 1998). The second
contains one INR per image from Fashion MNIST (Xiao et al., 2017). An INR is modeled by a small
MLP that learns the mapping from an input coordinate to the grayscale value of the image (or to the
RGB value for colored images). Each INR is separately optimized to reconstruct its corresponding
image. We use the open-source INR datasets provided by Navon et al. (2023).

In the style editing task, we assess the model’s ability to predict weight updates for the INRs using
the MNIST INR dataset. The objective is to enlarge the represented digit through dilation. We follow
the same training objective as Zhou et al. (2023a).

Results. In Figures 2a and 2b, we observe that our approach outperforms the equivariant baseline by
up to +11.6% on MNIST and up to +7.8% on Fashion MNIST in INR classification. In Figure 2c, we
also observe performance gains over both DWSNet and NFN in the style editing task. Interestingly,
the baseline can perform equally well in terms of training loss, but our graph-based approach exhibits
better generalization performance. We do not report any non-equivariant baselines as they all perform
considerably worse. The results highlight that increasing the number of probe features can further
improve the performance. Furthermore, the probe features are effective even in a setting where we
require an output per parameter as opposed to a global prediction. Despite the advancements, a
performance gap persists when compared to the performance of neural networks applied directly to the
original data. We hypothesize that a key factor contributing to this gap is overfitting, compounded by
the absence of appropriate data augmentation techniques to mitigate it. This hypothesis is supported
by the findings of Navon et al. (2023), who observed that the addition of 9 INR views as a data
augmentation strategy increased accuracy by +8%.

Importance of positional embeddings. We ablate the significance of positional embeddings in the
task of MNIST INR classification. Without positional embeddings, NG-GNN achieves an accuracy
of 83.9±0.3%, and NG-T attains 77.9±0.7%. This is a decrease of 7.5 and 14.5 points respectively,
which highlights the importance of positional embeddings.

2https://github.com/mkofinas/neural-graphs
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(a) MNIST classification (b) Fashion MNIST classification (c) MNIST dilation

Figure 2: INR classification and style editing. Results are averaged over 4 seeds. Classification results
are in Figures 2a and 2b, and dilation results are in Figure 2c. Both NG-GNN and NG-T outperform
DWSNet and NFN already with 0 probe features and significantly improve with more probe features.

Table 1: Predicting CNN generalization from weights. Kendall’s τ on CIFAR10-GS (Unterthiner
et al., 2020) and CNN Wild Park. Higher is better. We report the mean and standard deviation for 3
seeds.

Method CIFAR10-GS CIFAR10 Wild Park

NFNHNP (Zhou et al., 2023a) 0.934±0.001 —
StatNN (Unterthiner et al., 2020) 0.915±0.002 0.719±0.010

NG-GNN (Ours) 0.930±0.001 0.804±0.009

NG-T (Ours) 0.935±0.000 0.817±0.007

4.2 PREDICTING CNN GENERALIZATION FROM PARAMETERS

Next, we consider the task of predicting the generalization performance of a CNN image classifier
based on its parameters (Unterthiner et al., 2020; Eilertsen et al., 2020; Schürholt et al., 2022b).

Setup. We consider two datasets with increasing complexity. First, we use the CIFAR10-GS dataset
from the Small CNN Zoo (Unterthiner et al., 2020), where GS denotes that images are converted
to grayscale. We closely follow the CNN generalization setting from Zhou et al. (2023a); we use
Kendall’s correlation τ to measure the performance, and we explore both MSE and binary cross
entropy as loss functions. We compare our method with NFN (Zhou et al., 2023a) and StatNN
(Unterthiner et al., 2020), a method that computes statistics (mean, standard deviation, quantiles) for
weights and biases of each layer, concatenates them, and processes them with an MLP.

The Small CNN Zoo comprises identical networks, i.e., all CNNs have the exact same convolutional
layers, non-linearities, and linear layers, and only vary in their weights and biases, resulting from
different initialization and training hyperparameters. Our method can in principle be applied to
datasets that contain neural networks with varying architectures, but we have yet to see whether
a single model can learn a joint representation. To test this, we introduce a new dataset of CNNs,
which we term CNN Wild Park. The dataset consists of 117,241 checkpoints from 2,800 CNNs,
trained for up to 1,000 epochs on CIFAR10. The CNNs vary in the number of layers, kernel sizes,
activation functions, and residual connections between arbitrary layers. We describe the dataset in
detail in Appendix E.1. We compare our method against StatNN (Unterthiner et al., 2020). NFN is
inapplicable in this setting, due to the heterogeneous architectures present in the dataset. Similar to
the CIFAR10-GS, we use Kendall’s τ to as an evaluation metric.

Results. We report results in Table 1. In both settings, our NG-T outperforms the baselines, while
NG-N performs slightly worse than NG-T. Although the performance gap in CIFAR10-GS is narrow,
on the Wild Park dataset we see a significant performance gap between StatNN and our neural graph
based approaches. Here the architecture of the CNN classifier offers crucial information and the
parameters alone appear to be insufficient.

Importance of non-linearity features. We ablate the significance of non-linearity features on CNN
Wild Park. Without non-linearity features, NG-GNN achieves 0.778±0.018, and NG-T 0.728±0.010,
resulting in a performance decrease by 2.6 and 8.9, respectively. This highlights that including the
non-linearities as features is crucial, especially for the Transformer.
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Table 2: Learning to optimize. Test image classification accuracy (%) after 1,000 steps. We repeat
the evaluation for 5 random seeds and report the mean and standard deviation.

Optimizer FashionMNIST (validation task) CIFAR-10 (test task)

Adam (Kingma & Ba, 2015) 80.97±0.66 54.76±2.82

FF (Metz et al., 2019) 85.08±0.14 57.55±1.06

LSTM (Metz et al., 2020) 85.69±0.23 59.10±0.66

NFN (Zhou et al., 2023a) 83.78±0.58 57.95±0.64

NG-GNN (Ours) 85.91±0.37 64.37±0.34

NG-T (Ours) 86.52±0.19 60.79±0.51

4.3 LEARNING TO OPTIMIZE

A novel application where leveraging the graph structure of a neural network may be important,
yet underexplored, is “learning to optimize” (L2O) (Chen et al., 2022; Amos, 2022). L2O’s task
is to train a neural network (optimizer) that can optimize the weights of other neural networks
(optimizee) with the potential to outperform hand-designed gradient-descent optimization algorithms
(SGD, Adam (Kingma & Ba, 2015), etc.). Original L2O models were based on recurrent neural
networks (Andrychowicz et al., 2016; Wichrowska et al., 2017; Chen et al., 2020). Recent L2O models
are based on simple and more efficient MLPs, but with stronger momentum-based features (Metz
et al., 2019; 2020; Harrison et al., 2022; Metz et al., 2022a).

Setup. We implement two strong learnable optimizer baselines: per-parameter feed forward neural
network (FF) (Metz et al., 2019) and its stronger variant (FF + layerwise LSTM, or just LSTM) (Metz
et al., 2020). FF predicts parameter updates for each parameter ignoring the structure of an optimizee
neural network. LSTM adds layer features (average features of all the weights within the layer) with
the LSTM propagating these features between layers. We also combine FF with NFN (Zhou et al.,
2023a) as another baseline, and add Adam as a non-learnable optimizer baseline. We compare these
baselines to FF combined with our NG-GNN or Relational transformer (NG-T). The combinations of
FF with the NFN, NG-GNN, and NG-T models are obtained analogously to LSTM, i.e., the weight
features are first transformed by these models and then passed to FF to predict parameter updates.

In all learnable optimizers, given an optimizee neural network with weights {W(l)}l=1,...,L,
the features include weight gradients {∇W(l)}l=1,...,L and momentums at five scales:
[0.5, 0.9, 0.99, 0.999, 0.9999] following Metz et al. (2019). These features are further preprocessed
with the log and sign functions (Andrychowicz et al., 2016), so the total number of node and edge
features is dV = dE = 14(wmax · hmax) in our experiments, where wmax · hmax comes from flattening
the convolutional kernels according to Section 2.2.

We follow a standard L2O setup and train each optimization method on FashionMNIST (Xiao et al.,
2017) followed by evaluation on FashionMNIST as well as on CIFAR-10 (Krizhevsky et al., 2009).
For FashionMNIST, we use a small three layer CNN with 16, 32, and 32 channels, and 3 × 3
(wmax × hmax) kernels in each layer followed by global average pooling and a classification layer. For
CIFAR-10, we use a larger CNN with 32, 64, and 64 channels.

In order to perform well on CIFAR-10, the learned optimizer has to generalize to both a larger
architecture and a different task. During the training of the optimizers, we recursively unroll the
optimizer for 100 inner steps in each outer step and train for up to 1,000 outer steps in total. Once the
optimizer is trained, we apply it for 1,000 steps on a given task. We train all the learnable optimizers
with different hyperparameters (hidden size, number of layers, learning rate, weight decay, number
of outer steps) and choose the configuration that performs the best on FashionMNIST. This way,
CIFAR-10 is a test task that is not used for the model/hyperparameter selection in our experiments.

Results. On the validation task (FashionMNIST), the best performing method is NG-T followed
by NG-GNN (Table 2). The best performing baseline is LSTM followed by FF. On the test task
(CIFAR-10), NG-GNN outperforms NG-T indicating its strong generalization capabilities. LSTM is
again the best performing baseline followed by NFN. The training loss and test accuracy curves on
CIFAR-10 also reveal that NG-GNN’s gain over other methods gradually grows demonstrating its
great potential in the L2O area (Figure 3). We believe that NG-T may also generalize better to new
tasks once it is trained on more tasks, following recent trends in L2O (Metz et al., 2022b).
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Figure 3: Training (left) and testing (right) curves on CIFAR-10 for the baseline optimizers (Adam,
FF, LSTM, NFN) and the optimizers trained with our NG-GNN and NG-T. NG-GNN and NG-T
outperform the baselines with the NG-GNN performing the best on this task.

5 RELATED WORK

Networks for networks. A recent line of work studies how to learn representations for trained
classifiers (Baker et al., 2017; Eilertsen et al., 2020; Unterthiner et al., 2020; Schürholt et al., 2021;
2022b;a) to predict their generalization performance, or other properties that provide insight into
neural networks. Dupont et al. (2022); De Luigi et al. (2023) learn low-dimensional encodings for
INRs for generation or other downstream tasks. These works either flatten the network parameters
or compute parameter statistics and process them with a standard MLP. Using statistics respects
the symmetries of the neural network, but discards fine-grained details that can be important for
the task. On the other hand, architectures that flatten the network parameters are not equivariant
with respect to the symmetries of the neural network. This is undesirable because models that are
functionally identical – obtained by permuting the weights and biases appropriately – can receive
vastly different predictions. Schürholt et al. (2021) proposed neuron permutation augmentations to
address the symmetry problem, however such an approach can require vastly more training compute
due to the size of the permutation group:

∏
l dl!. Other related works (Peebles et al., 2022; Ashkenazi

et al., 2023; Knyazev et al., 2021; Erkoç et al., 2023) encode and/or decode neural network parameters
mainly for reconstruction and generation purposes. However, similarly to the aforementioned works,
these do not address the symmetry problem in a principled way.

The symmetry problem. Three recent studies address these shortcomings and propose equivariant
linear layers that achieve equivariance through intricate weight-sharing patterns (Navon et al., 2023;
Zhou et al., 2023a;b). They compose these layers to create both invariant and equivariant networks
for networks. So far, their performance on INR classification shows that there is still a gap when
compared to image classification using CNNs. Similar to these studies, our proposed method
maintains the symmetry of the neural network. In contrast to these works, by integrating the graph
structure in our neural network, we are no longer limited to homogeneous architectures and can
process heterogeneous architectures for a much wider gamut of applications.

6 CONCLUSION AND FUTURE WORK

We have presented an effective method for processing neural networks with neural networks by
representing the input neural networks as neural graphs. Our experiments showcase the breadth of
applications that this method can be applied to. The general framework is flexible enough so that
domain-specific adaptations, e.g., including gradients as inputs, are simple to add. Furthermore, by
directly using the graph, we open the door for a variety of applications that require processing varying
architectures, as well as new benchmarks for graph neural networks.

Limitations. While our method is versatile enough to handle neural networks with a diverse range
of architectural designs, the scope of our investigation was limited to two different architecture
families (MLPs and CNNs), and only theoretically demonstrated how to represent transformers as
neural graphs. Another limitation is that our method’s strong performance on INRs is confined to
2D images, which restricts its applicability. Extending our approach to handle neural radiance fields
(Mildenhall et al., 2020) would substantially broaden its utility.
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Zoos: A Dataset of Diverse Populations of Neural Network Models. In Advances in Neural
Information Processing Systems 35 (NeurIPS), 2022b. 7, 9

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In 3rd International Conference on Learning Representations (ICLR), 2015. 4

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
Neural Representations with Periodic Activation Functions. In Advances in Neural Information
Processing Systems 33 (NeurIPS), 2020. 6

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
Neural Network Accuracy from Weights. arXiv preprint arXiv:2002.11448, 2020. 1, 7, 9, 19

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Advances in Neural Information
Processing Systems 30 (NeurIPS), 2017. 4, 6

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned Optimizers that Scale and Generalize.
In Proceedings of the 34th International Conference on Machine Learning (ICML), 2017. 8

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, 2017. 6, 8

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What Can Neural Networks Reason About? In 8th International Conference for Learning
Representations (ICLR), 2020. 5, 15

Allan Zhou, Kaien Yang, Kaylee Burns, Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea
Finn. Permutation Equivariant Neural Functionals. In Advances in Neural Information Processing
Systems 36 (NeurIPS), 2023a. 1, 5, 6, 7, 8, 9, 13, 14, 18

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter, and
Chelsea Finn. Neural Functional Transformers. In Advances in Neural Information Processing
Systems 36 (NeurIPS), 2023b. 9, 14

12



Published as a conference paper at ICLR 2024

A EQUIVARIANCE PROPERTIES

In this section, we will address three points. First, we state the symmetry group of the neural graph
explicitly. Then, we restate the symmetry group of prior works and establish that any model that
is equivariant to neural graphs will automatically be equivariant to the symmetry of the prior work.
Lastly, we discuss why we believe that our choice of symmetry is usually more appropriate for
processing neural network parameters as input.

A.1 NEURAL GRAPH SYMMETRIES

Since we represent the input as a graph, we can use many existing properties of graphs. Namely,
it is well-established that the symmetries of graphs are given by the symmetric group Sn of order
n =

∑L
l=0 dl (the total number of nodes). Let ρ denote the group representation that maps a

permutation π ∈ Sn to the corresponding permutation matrix. A group action α on the graph
G = (V ,E) can be defined as:

α(π, (V ,E)) =
(
ρ(π)V , ρ(π)⊤Eρ(π)

)
. (6)

We want to process the neural graph with a neural network that maintains the equivariance with
respect to the specified symmetries. One such example is the standard message passing graph neural
network (MPNN), which is equivariant (cf. Bronstein et al. (2021)) since all individual operations are
designed to be equivariant.

A.2 NEURON PERMUTATION GROUP

Similar to Zhou et al. (2023a), we focus on the neuron permutation (NP) group to simplify the
exposition. The main difference to the symmetry usually present in neural network parameters3 is
that input and output neurons can be freely permuted as well. As we describe in Section 2.4, we use
positional embeddings rather than modifying the architecture to disambiguate the ordering of input
and output neurons, so this difference is not directly relevant to the following discussion.

We now restate the definitions of Zhou et al. (2023a) in our notation to allow for discussion of the
similarities and differences. First, the NP group is defined as S = Sd0

× . . .× SdL
. The elements of

the group are then π′ = (π0, . . . , πL). For a specific layer l, the actions β are defined as

β
(
π′,

(
W(l),b(l)

))
=

(
ρ(πl)b

(l), ρ(πl)W
(l)ρ(πl−1)

⊤
)
. (7)

We can already see the similarity between Equations (6) and (7). To make this connection more
concrete, notice that S is a subgroup of Sn. This is because S is defined as a direct product of
symmetric groups whose degrees sum up to n by definition. We can also verify that any action of
S corresponds to an action of Sn. To see this, define the group representation ρ′ of S as the block
permutation matrix:

ρ′(π′) =


ρ(π0) 0 . . . 0

0 ρ(π1)
. . .

...
...

. . . . . . 0
0 . . . 0 ρ(πL)

 (8)

Then, we can rewrite β as β′ in exactly the same form as α:

β′(π′, (V ,E)) =
(
ρ′(π′)V , ρ′(π′)⊤Eρ′(π′)

)
. (9)

Since S is a subgroup of Sn, any model that is Sn-equivariant must also be S-equivariant. In other
words, choosing models like MPNNs with our neural graph ensures that we satisfy the permutation
symmetries of neural networks established in the literature.

3Defined by Zhou et al. (2023a) as the hidden neuron permutation (HNP) group

13



Published as a conference paper at ICLR 2024

A.3 DISCUSSION

Why would we prefer one symmetry group over the other? The main factor is that Sn encompasses
many choices of S at once. Using a single Sn-equivariant model, our method is automatically
equivariant to any choice of d0, . . . , dL that sums to n; the same model can process many different
types of architectures. In contrast, prior works (Navon et al., 2023; Zhou et al., 2023a) propose
models that are solely equivariant to S , which restrict the models to a specific choice for d0, . . . , dL at
a time; hence, it is not possible to process different network architectures with DWSNet (Navon et al.,
2023) and NFN (Zhou et al., 2023b). Thus, when there is a need to process different architectures
with the same model, the neural graph representation is more suitable.

Another aspect to consider is that DWSNet and NFN learn different parameters for each layer in the
input neural network. In contrast, a neural network operating on the neural graph shares parameters
for the update function that it applies at every node, irrespective of the layer it belongs to. This
difference is particularly relevant in scenarios where performance on a single, fixed architecture is
the primary focus. Under such conditions, the inherent equivariance of our model may be overly
constraining, failing to meet the criteria for minimal equivariance as outlined by Zhou et al. (2023b).
This has two potential effects: the reduced number of parameters could force the model to learn
more generalizable features that work across layers, or it could simply result in not having enough
parameters to fit the data. We remedy this shortcoming by integrating layer embeddings that identify
the layer each node belongs to. These features are added to the node representations and enable graph
neural networks to differentiate each node depending on the layer.

Experimentally, we observe that our model not only outperforms the baselines but also generalizes
better. In Figure 4, we plot the train and test losses for MNIST INR classification. We observe that
even at points where the train losses match, the test loss of NG-T is lower. The results confirm that
the parameter sharing from Sn equivariance not only does not harm the performance but might even
benefit generalization.

Figure 4: Generalization comparison between DWSNet and NG-T on MNIST INR classification. We
observe better generalization for NG-T compared to DWSNet

B EXPRESSIVITY OF GNNS FOR NEURAL GRAPHS

The ability to approximate the forward pass of an input neural network can indicate the expressiveness
of a neural network operating on other neural networks as inputs (Navon et al., 2023). We demonstrate
that a general message-passing neural network with L layers can simulate the forward pass of any
input MLP with L layers. We first place the input for which we intend to compute the forward pass
in the node features of the input nodes in the neural graph. Then we simulate the l-th layer’s forward
pass with the l-th layer in the MPNN. To illustrate how this can be achieved, we start by decomposing
the first layer of an MLP with activation function σ into scalar operations:

f(x)i = σ(Wix+ bi) = σ

bi +
∑
j

Wijxj

. (10)
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We compare this to the update operation for the node features vi → v′
i in an MPNN:

v′
i = ϕu

vi,
∑
j

ϕm(vi, eij ,vj)

. (11)

We can draw parallels between the operations in the MPNN and how the input MLP computes the
subsequent layer’s activations. For improved clarity, we assume in the following that the indices i, j
match between the parameters and the graph’s nodes and edges. A more precise version would need
to add an offset d0 to the index i in the graph. First, we recall that the edge features eij contain the
weights of the MLP Wij , the node features vj contain the input features xj (for which we compute
the forward pass), and the node features vi contain the biases bi. The first layer of the MPNN can
approximate f(x)i, by approximating the scalar product Wijxj with the neural network ϕm. Given
these inputs, ϕm merely needs to approximate a multiplication between the last two inputs. The
addition of the bias, followed by the activation function σ can easily be approximated with the node
update MLP ϕu.

For the remaining layers in the MLP, the ϕu merely needs to ensure that it preserves the input node
features until it requires them for approximating the l-th MLP layer in the l-th MPNN layer. For this,
we simply include a layer embedding as a layer position indicator in the input node features. Finally,
the output of the simulated forward pass coincides with the node features of the final MPNN layer.

This construction approximates the forward pass of an input neural network by using a general MPNN
that operates on the neural graph. The algorithmic alignment between the operations of the MPNN
and the computational steps of the forward pass indicates that the forward pass is not only possible to
express, but it can also be learned efficiently (Xu et al., 2020).

C NEURAL GRAPH REPRESENTATIONS

C.1 MLPS AS GRAPHS

The neural graph specifies the computation of the neural network. Edges apply the function yij =
wijxi where wij is the weight associated with the edge eij and the input xi comes from the tail node
vi. The node vj applies the sum operation xj = bj +

∑
i yij on all incoming edges’ yij .

C.2 CNNS AS GRAPHS

Figure 5: Permutation symmetries in a CNN,
shown in a 2-layer CNN sub-network. The
first convolutional layer has a filter bank of C2

filters, each with C1 channels, and the second
layer has C3 filters, each with C2 channels.
Permuting the filters in the first layer results
in permuting the channels of the feature map.
Applying a permutation in the channels of the
filters in the second layer cancels out the per-
mutations, resulting in permutation invariance.

Flattening layer We propose two options for dealing with the flattening layer of traditional CNN
architectures: adding one extra (virtual) layer, or repeating nodes in the last convolutional layer. For
either option, we are binding the neural graph to a specific spatial resolution, and thus, we need to
encode that in the graph structure as well.

In the first option, we repeat every node in the last convolutional layer by the number of spatial
locations. As an example, if the CNN produces a feature map that has spatial dimensions of 7× 7 at
that layer, then we would need to copy the nodes 49 times. When we copy a node, we also need to
copy the edges that point to it. The weights connecting these nodes to the subsequent linear layer
do not require any changes, since they already account for the spatial structure. Finally, we add
positional embeddings to the copied nodes to indicate their different locations in space.
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Figure 6: Representation of a convolutional kernel. We zero-pad to a predetermined maximum kernel
size (5× 5 in this example) and flatten it.

An alternative option is to add an extra (virtual) layer, between the last convolutional layer and the
subsequent linear layer. In that layer, we generate as many nodes as the spatial resolution of the
feature map (e.g. 49 in the example above), for each node in the last convolutional layer. Each node
in the last convolutional layer is only connected to its own set of virtual nodes, with a weight of 1.
The new virtual nodes don’t have any node features.

C.3 NORMALIZATION LAYERS AS GRAPHS

Normalization layers, e.g. BatchNorm (Ioffe & Szegedy, 2015) and LayerNorm (Ba et al., 2016)
are formulated as y = γ ⊙ x + β, which can be rewritten as a linear layer with diagonal weights
y = diag(γ)x+ β. As such, we can treat normalization layers like linear layers: given d nodes that
represent the d-dimensional input to the normalization layer x, we add an additional d nodes that
correspond to the d-dimensional output y. The additional node features capture the additive terms
β, while the edge features capture the multiplicative terms γ. We only add edges from xi to the
corresponding yi to model the element-wise multiplication.

C.4 TRANSFORMERS AS GRAPHS

Multi-head self-attention layers initially apply linear projections to the inputs X. In total, assuming
H heads, we have 3H linear layers applied independently to the inputs.

Qh = XWQ
h (12)

Kh = XWK
h (13)

Vh = XWV
h , (14)

with h ∈ {1, . . . ,H}. Each head is followed by a dot-product attention layer Yh = s(QhK
T
h )Vh,

where s is the softmax function. Finally, we concatenate all heads and perform a final linear projection:

MHSA(X) = Concat(Y1, . . . ,YH)WO. (15)

A multi-head self attention layer takes d-dimensional vectors as inputs and produces dH -dimensional
vectors as output of each head, which are then concatenated and linearly projected to d dimensions.
In the neural graph construction, we add d nodes for each dimension of the input, H · dH nodes for
each dimension of each head, and d nodes for each dimension of the output.

We model the 3 different types of linear projections with multidimensional edge features. More

specifically, for each edge feature we have ehij =

((
WQ

h

)
ij
,
(
WK

h

)
ij
,
(
WV

h )
)
ij

)
. Since dot-

product attention is a parameter-free operation, we don’t model explicitly and let the neural graph
network approximate it. The concatenation of all heads is automatically handled by the neural graph
itself by connecting the appropriate nodes from each head through the output weights WO to the
corresponding output node. The final projection WO is treated as a standard linear layer.
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D EXPERIMENTAL SETUP DETAILS

We provide the code for our experiments in the supplementary material. Here, we list the hyperpa-
rameters used in our experiments.

D.1 INR CLASSIFICATION AND STYLE EDITING

The NG-T model consists of 4 layers with 64 hidden dimensions, 4 attention heads, and dropout at
0.2 probability. In the classification setting, we concatenate the node representations that belong to
the final layer of the INR and insert this into a classification head. Together with the classification
head, this results in 378,090 trainable parameters.

The NG-GNN model consists of 4 layers, 64 hidden dimensions, and applies dropout at 0.2 probability.
In the classification setting, we concatenate the node representations that belong to the final layer of
the INR and insert this into a classification head. Together with the classification head, this results in
348,746 trainable parameters.

We use the same architectures without the final aggregation and the classification head in the style
editing experiment. The NG-GNN additionally uses the reversed edge features.

We train for 100 epochs on MNIST and for 150 epochs on FMNIST. We apply the same early stopping
protocol as Navon et al. (2023).

D.2 PREDICTING CNN GENERALIZATION FROM PARAMETERS

We do a small hyperparameter sweep for all models. For the StatNN baseline, we use 1000 hidden
dimensions resulting in a model resulting in 1,087,001 trainable parameters.

For the NG-T we use 4 layers with 8 hidden dimensions for the edges and 16 for the nodes, 1 attention
head, and no dropout. We concatenate the node representations of the final layer and insert them into
the classification head.

For the NG-GNN model, we use 64 hidden dimensions, resulting in 369,025 trainable parameters.
We concatenate the node representations of the final layer and insert them into the classification head.

We train all models for 10 epochs.

D.3 PROBE FEATURES

We use probe features in the INR classification and INR style editing experiments. We do not use
probe features in the task of predicting CNN generalization, or the learning to optimize task.

E DATASET DETAILS

E.1 SMALL CNN WILD PARK

We construct the CNN Wild Park dataset by training 2800 small CNNs with different architectures
for 200 to 1000 epochs on CIFAR10. We retain a checkpoint of its parameters every 10 steps and
also record the test accuracy. The CNNs vary by:

• Number of layers L ∈ [2, 3, 4, 5] (note that this does not count the input layer).
• Number of channels per layer cl ∈ [4, 8, 16, 32].
• Kernel size of each convolution kl ∈ [3, 5, 7].
• Activation functions at each layer are one of ReLU, GeLU, tanh, sigmoid, leaky ReLU, or

the identity function.
• Skip connections between two layers with at least one layer in between. Each layer can

have at most one incoming skip connection. We allow for skip connections even in the
case when the number of channels differ, to increase the variety of architectures and ensure
independence between different architectural choices. We enable this by adding the skip
connection only to the min(cn, cm) nodes.
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We divide the dataset into train/val/test splits such that checkpoints from the same run are not
contained in both the train and test splits.

F EXPERIMENT RESULTS

We provide the exact results of our experiments for reference and easier comparison.

Table 3: Classification of MNIST INRs. All graph-based models outperform the baselines.

Model # probe features Accuracy in %

MLP (Navon et al., 2023) — 17.6±0.0

Set NN (Navon et al., 2023) — 23.7±0.1

DWSNet (Navon et al., 2023) — 85.7±0.6

NG-GNN (Ours) 0 91.4±0.6

NG-GNN (Ours) 4 91.8±0.5

NG-GNN (Ours) 16 92.8±0.3

NG-GNN (Ours) 64 94.7±0.3

NG-T (Ours) 0 92.4±0.3

NG-T (Ours) 4 93.3±0.2

NG-T (Ours) 16 94.9±0.3

NG-T (Ours) 64 97.3±0.2

Table 4: Classification of Fashion MNIST INRs. All graph-based models outperform the baselines.

Model # probe features Accuracy in %

MLP (Navon et al., 2023) — 19.9±0.5

Set NN (Navon et al., 2023) — 22.3±0.4

DWSNet (Navon et al., 2023) — 67.1±0.3

NG-GNN (Ours) 0 68.0±0.2

NG-GNN (Ours) 4 71.9±0.3

NG-GNN (Ours) 16 73.1±0.3

NG-GNN (Ours) 64 74.2±0.4

NG-T (Ours) 0 72.7±0.6

NG-T (Ours) 4 73.8±0.3

NG-T (Ours) 16 74.1±1.5

NG-T (Ours) 64 74.8±0.9

Table 5: Dilating MNIST INRs. Mean-squared error (MSE) computed between the reconstructed
image and dilated ground-truth image. Lower is better.

Model # probe features MSE in 10−2

DWSNet (Navon et al., 2023) — 2.58±0.00

NFN (Zhou et al., 2023a) — 2.55±0.00

NG-GNN (Ours) 0 2.38±0.02

NG-GNN (Ours) 4 2.26±0.01

NG-GNN (Ours) 16 2.17±0.01

NG-GNN (Ours) 64 2.06±0.01

NG-T (Ours) 0 1.96±0.00

NG-T (Ours) 4 1.88±0.02

NG-T (Ours) 16 1.82±0.02

NG-T (Ours) 64 1.75±0.01
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Table 6: Ablation study on the importance of non-linearity embeddings in the task of predicting CNN
generalization from weights. Performance is measured as Kendall’s τ on CNN Wild Park. Higher is
better. Removing the non-linearity embeddings results in performance decrease by 2.6 for NG-GNN
and 8.9 for NG-T. The ablation highlights that including the non-linearities as features in the neural
graph is crucial, especially for the Transformer variant.

Method Kendall’s τ

StatNN (Unterthiner et al., 2020) 0.719±0.010

NG-GNN (Ours) 0.804±0.009

NG-GNN w/o activation embedding 0.778±0.018

NG-T (Ours) 0.817±0.007

NG-T w/o activation embedding 0.728±0.010

Table 7: Ablation study on the importance of positional embeddings in the task of MNIST INR
classification. Removing positional embeddings results in a decrease of 7.5 points for NG-GNN and
14.5 for NG-T, which highlights the importance of positional embeddings.

Method Accuracy in %

NG-GNN (Ours) 91.4±0.6

NG-GNN w/o positional embeddings 83.9±0.3

NG-T (Ours) 92.4±0.3

NG-T w/o positional embeddings 77.9±0.7
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